Теория вероятности: формулы и примеры решения задач. Простые задачи по теории вероятности

Для вычисления вероятности Р А события А необходимо построить математическую модель изучаемого объекта, которая содержит событие А. Основой модели является вероятностное пространство (,?,Р), где - пространство элементарных событий, ? - класс событий с введенными над ними операциями композиции,

Вероятность любого события А, имеющего смысл в и входящего в класс событий? 25. Если, например,

то из аксиомы 3, вероятностей, следует, что

Таким образом, вычисление вероятности события А, сведено к вычислению вероятностей элементарных событий, его составляющих, а так как они являются «базовыми», то методы их вычисления не обязаны зависить от аксиоматики теории вероятностей.

Здесь рассмотрены три подхода к вычислению вероятностей элементарных событий:

классический;

геометрический;

статистический или частотный.

Классический метод вычисления вероятностей

Из аксиоматического определения вероятности следует, что вероятность существует для любого события А, но как ее вычислить, об этом ничего не говорится, хотя известно, что для каждого элементарного события i существует вероятность рi, такая, что сумма вероятностей всех элементарных событий пространства равна единице, то есть

На использовании этого факта основан классический метод вычисления вероятностей случайных событий, который в силу своей специфичности, дает способ нахождения вероятностей этих событий непосредственно из аксиом.

Пусть дано фиксированное вероятностное пространство (,?,Р), в котором:

  • а) состоит из конечного числа n элементарных событий,
  • б) каждому элементарному событию i поставлена в соответствие вероятность

Рассмотрим событие А, которое состоит из m элементарных событий:

тогда из аксиомы 3 вероятностей, в силу несовместности элементарных событий, следует, что

Тем самым имеем формулу

которую можно интерпретировать следующим образом: вероятность событию А произойти равна отношению числа элементарных событий, благоприятствующих появлению событию А, к числу всех элементарных событий из.

В этом суть классического метода вычисления вероятностей событий.

Замечание. Приписав одинаковую вероятность каждому из элементарных событий пространства, мы, с одной стороны, имея вероятностное пространство и опираясь на аксиомы теории вероятностей, получили правило вычисления вероятностей любых случайных событий из пространства по формуле (2), с другой стороны, это дает нам основание считать все элементарные события равновозможными и вычисление вероятностей любых случайных событий из свести к «урновой» схеме независимо от аксиом.

Из формулы (2) следует, что вероятность события А зависит только от числа элементарных событий, из которых оно состоит и не зависит от их конкретного содержания. Таким образом, чтобы воспользоваться формулой (2), необходимо найти число точек пространства и число точек, из которых состоит событие А, но тогда это уже задача комбинаторного анализа.

Рассмотрим несколько примеров.

Пример 8. В урне из n шаров - k красных и (n - k) черных. Наудачу извлекаем без возвращения r шаров. Какова вероятность того, что в выборке из r шаров s шаров - красных?

Решение. Пусть событие {А} {в выборке из r шаров s - красных}. Искомая вероятность находится по классической схеме, формула (2):

где - число возможных выборок объема r, которые различаются хотя бы одним номером шара, а m - число выборок объема r, в которых s шаров красных. Для, очевидно, число возможных вариантов выборки равно, а m, как следует из примера 7, равно

Таким образом, искомая вероятность равна

Пусть дан набор попарно несовместных событий As,

образующих полную группу, тогда

В этом случае говорят, что имеем распределение вероятностей событий As.

Распределения вероятностей является одним из фундаментальных понятий современной теории вероятностей и составляет основу аксиомами Колмагорова.

Определение. Распределение вероятностей

определяется гипергеометрическое распределение.

Боровков А.А. в своей книге на примере формулы (3) поясняет природу задач теории вероятностей и математической статистики следующим образом: зная состав генеральной совокупности, мы с помощью гипергеометрического распределения можем выяснить, каким может быть состав выборки - это типичная задача теории вероятностей (прямая задача). В естественных науках решают обратную задачу: по составу выборок, определяют природу генеральных совокупностей - это обратная задача, и она, образно говоря, составляет содержание математической статистики.

Обобщением биномиальных коэффициентов (сочетаний) являются полиномиальные коэффициенты, которые своим названием обязаны разложению полинома вида

по степеням слагаемых.

Полиномиальные коэффициенты (4) часто применяются при решении комбинаторных задач.

Теорема. Пусть имеется k различных ящиков, по которым раскладываются пронумерованные шары. Тогда число размещений шаров по ящикам так, чтобы в ящике с номером r находилось ri шаров,

определяется полиномиальными коэффициентами (4).

Доказательство. Поскольку порядок расположения ящиков важен, а шаров в ящиках - не важен, то для подсчета размещений шаров в любом ящике можно воспользоваться сочетаниями.

В первом ящике r1 шаров из n можно выбрать способами, во втором ящике r2 шаров, из оставшихся (n - r1) можно выбрать способами и так далее, в (k - 1) ящик rk-1 шаров выбираем

способами; в ящик k - оставшиеся

шаров попадают автоматически, одним способом.

Таким образом, всего размещений будет

Пример. По n ящикам случайно распределяются n шаров. Считая, что ящики и шары различимы, найти вероятности следующих событий:

  • а) все ящики не пустые = А0;
  • б) один ящик пуст = А1;
  • в) два ящика пустых = А2;
  • г) три ящика пустых = А3;
  • д) (n-1) - ящик пуст = А4.

Решить задачу для случая n = 5.

Решение. Из условия следует, что распределение шаров по ящикам есть простой случайный выбор, следовательно, всех вариантов nn.

Эта последовательность означает, что в первом, втором и третьем ящиках по три шара, в четвертом и пятом по два шара, в остальных (n - 5) ящиках по одному шару. Всего таких размещений шаров по ящикам будет

Так как шары на самом деле различимы, то на каждую такую комбинацию будем иметь

размещений шаров. Таким образом, всего вариантов будет

Переходим к решению по пунктам примера:

а) так как в каждом ящике находится по одному шару, то имеем последовательность 111…11, для которой число размещений равно n!/ n! = 1. Если шары различимы, то имеем n!/ 1! размещений, следовательно, всего вариантов m = 1n!= n!, отсюда

б) если один ящик пуст, то какой-то ящик содержит два шара, тогда имеем последовательность 211…10, для которой число размещений равно n! (n-2)!. Так как шары различимы, то для каждой такой комбинации имеем n!/ 2! размещений. Всего вариантов

в) если два ящика пусты, то имеем две последовательности: 311…100 и 221…100. Для первой число размещений равно

n!/ (2! (n - 3)!).

На каждую такую комбинацию имеем n!/ 3! размещений шаров. Итак, для первой последовательности, число вариантов равно

Для второй последовательности всего вариантов будет

Окончательно имеем

г) для трех пустых ящиков будет три последовательности: 411…1000, либо 3211…1000, либо 22211…1000.

Для первой последовательности имеем

Для второй последовательности

Для третьей последовательности получаем

Всего вариантов

m = k1 + k2 + k3,

Искомая вероятность равна

д) если (n -1) ящик пуст, то все шары должны находиться в одном из ящиков. Очевидно, что число комбинаций равно

Соответствующая этому событию вероятность равна

При n = 5, имеем

Заметим, что при n = 5 события Аi должны образовывать полную группу, что соответствует действительности. В самом деле

Наш ответ

Выбор правильной ставки зависит не только от интуиции, спортивных знаний, букмекерских коэффициентов, но и от коэффициента вероятности события. Возможность рассчитать подобный показатель в беттинге является залогом успеха в прогнозировании предстоящего события, на который предполагается осуществление ставки.
В букмекерских конторах существует три вида коэффициентов (подробней в статье ), от разновидности которых зависит, как рассчитать вероятность события игроку.

Десятичные коэффициенты

Расчет вероятности события в таком случае происходит по формуле: 1/коэф.соб. = в.и, где коэф.соб. – коэффициент события, а в.и – вероятность исхода. Например, берем коэффициент события 1,80 при ставке в один доллар, совершая математическое действие по формуле, игрок получает, что вероятность исхода события по версии букмекера 0,55 процента.

Дробные коэффициенты

При использовании дробных коэффициентов формула расчета вероятности будет другая. Так при коэффициенте 7/2, где первая цифра означает возможный размер чистой прибыли, а вторая размер необходимой ставки, для получения этой прибыли, уравнение будет выглядеть следующим образом: зн.коэф/ на сумму зн.коэф и чс.коэф = в.и. Здесь зн.коэф – знаменатель коэффициента, чс.коэф – числитель коэффициента, в.и – вероятность исхода. Таким образом, для дробного коэффициента 7/2 уравнение выглядит как 2 / (7+2) = 2 / 9 = 0.22, следовательно, 0,22 процента вероятность исхода события по версии букмекерской конторы.

Американские коэффициенты

Американские коэффициенты мало популярны у игроков и, как правило, используются исключительно в США, обладая сложной и запутанной структурой. Для ответа на вопрос: «Как посчитать вероятность события таким способом?», нужно знать, что подобные коэффициенты могут быть отрицательными и положительными.

Коэффициент со знаком «-», например -150, показывает, что игроку для получения чистой прибыли в 100 долларов необходимо совершить ставку в 150 долларов. Вероятность события рассчитывается исходя из формулы, где нужно разделить отрицательный коэффициент на сумму отрицательного коэффициента и 100. Выглядит это на примере ставки -150, так (-(-150)) / ((-(-150)) + 100) = 150 / (150 + 100) = 150 / 250 = 0.6, где 0,6 умножается на 100 и исход вероятности события составляет 60 процентов. Эта же формула подходит и для положительных американских коэффициентов.

"Случайности не случайны"... Звучит так, словно сказал философ, но на деле изучать случайности удел великой науки математики. В математике случайностями занимается теория вероятности. Формулы и примеры заданий, а также основные определения этой науки будут представлены в статье.

Что такое теория вероятности?

Теория вероятности - это одна из математических дисциплин, которая изучает случайные события.

Чтобы было немного понятнее, приведем небольшой пример: если подкинуть вверх монету, она может упасть «орлом» или «решкой». Пока монета находится в воздухе, обе эти вероятности возможны. То есть вероятность возможных последствий соотносится 1:1. Если из колоды с 36-ю картами вытащить одну, тогда вероятность будет обозначаться как 1:36. Казалось бы, что здесь нечего исследовать и предугадывать, тем более при помощи математических формул. Тем не менее, если повторять определенное действие много раз, то можно выявить некую закономерность и на ее основе спрогнозировать исход событий в других условиях.

Если обобщить все вышесказанное, теория вероятности в классическом понимании изучает возможность возникновения одного из возможных событий в числовом значении.

Со страниц истории

Теория вероятности, формулы и примеры первых заданий появились еще в далеком Средневековье, когда впервые возникли попытки спрогнозировать исход карточных игр.

Изначально теория вероятности не имела ничего общего с математикой. Она обосновывалась эмпирическими фактами или свойствами события, которое можно было воспроизвести на практике. Первые работы в этой сфере как в математической дисциплине появились в XVII веке. Родоначальниками стали Блез Паскаль и Пьер Ферма. Длительное время они изучали азартные игры и увидели определенные закономерности, о которых и решили рассказать обществу.

Такую же методику изобрел Христиан Гюйгенс, хотя он не был знаком с результатами исследований Паскаля и Ферма. Понятие «теория вероятности», формулы и примеры, что считаются первыми в истории дисциплины, были введены именно им.

Немаловажное значение имеют и работы Якоба Бернулли, теоремы Лапласа и Пуассона. Они сделали теорию вероятности больше похожей на математическую дисциплину. Свой теперешний вид теория вероятностей, формулы и примеры основных заданий получили благодаря аксиомам Колмогорова. В результате всех изменений теория вероятности стала одним из математических разделов.

Базовые понятия теории вероятностей. События

Главным понятием этой дисциплины является "событие". События бывают трех видов:

  • Достоверные. Те, которые произойдут в любом случае (монета упадет).
  • Невозможные. События, что не произойдут ни при каком раскладе (монета останется висеть в воздухе).
  • Случайные. Те, что произойдут или не произойдут. На них могут повлиять разные факторы, которые предугадать очень трудно. Если говорить о монете, то случайные факторы, что могут повлиять на результат: физические характеристики монеты, ее форма, исходное положение, сила броска и т. д.

Все события в примерах обозначаются заглавными латинскими буквами, за исключением Р, которой отведена другая роль. Например:

  • А = «студенты пришли на лекцию».
  • Ā = «студенты не пришли на лекцию».

В практических заданиях события принято записывать словами.

Одна из важнейших характеристик событий - их равновозможность. То есть, если подбросить монету, все варианты исходного падения возможны, пока она не упала. Но также события бывают и не равновозможными. Это происходит, когда кто-то специально воздействует на исход. Например, «меченые» игральные карты или игральные кости, в которых смещен центр тяжести.

Еще события бывают совместимыми и несовместимыми. Совместимые события не исключают появления друг друга. Например:

  • А = «студентка пришла на лекцию».
  • В = «студент пришел на лекцию».

Эти события независимы друг от друга, и появление одного из них не влияет на появление другого. Несовместимые события определяются тем, что появление одного исключает появление другого. Если говорить о той же монете, то выпадение «решки» делает невозможным появление «орла» в этом же эксперименте.

Действия над событиями

События можно умножать и складывать, соответственно, в дисциплине вводятся логические связки «И» и «ИЛИ».

Сумма определяется тем, что может появиться или событие А, или В, или два одновременно. В случае когда они несовместимы, последний вариант невозможен, выпадет или А, или В.

Умножение событий заключается в появлении А и В одновременно.

Теперь можно привести несколько примеров, чтобы лучше запомнились основы, теория вероятности и формулы. Примеры решения задач далее.

Задание 1 : Фирма принимает участие в конкурсе на получение контрактов на три разновидности работы. Возможные события, которые могут произойти:

  • А = «фирма получит первый контракт».
  • А 1 = «фирма не получит первый контракт».
  • В = «фирма получит второй контракт».
  • В 1 = «фирма не получит второй контракт»
  • С = «фирма получит третий контракт».
  • С 1 = «фирма не получит третий контракт».

С помощью действий над событиями попробуем выразить следующие ситуации:

  • К = «фирма получит все контракты».

В математическом виде уравнение будет иметь следующий вид: К = АВС.

  • М = «фирма не получит ни одного контракта».

М = А 1 В 1 С 1 .

Усложняем задание: H = «фирма получит один контракт». Поскольку не известно, какой именно контракт получит фирма (первый, второй или третий), необходимо записать весь ряд возможных событий:

Н = А 1 ВС 1 υ АВ 1 С 1 υ А 1 В 1 С.

А 1 ВС 1 - это ряд событий, где фирма не получает первый и третий контракт, но получает второй. Соответственным методом записаны и другие возможные события. Символ υ в дисциплине обозначает связку «ИЛИ». Если перевести приведенный пример на человеческий язык, то фирма получит или третий контракт, или второй, или первый. Подобным образом можно записывать и другие условия в дисциплине «Теория вероятности». Формулы и примеры решения задач, представленные выше, помогут сделать это самостоятельно.

Собственно, вероятность

Пожалуй, в этой математической дисциплине вероятность события - это центральное понятие. Существует 3 определения вероятности:

  • классическое;
  • статистическое;
  • геометрическое.

Каждое имеет свое место в изучении вероятностей. Теория вероятности, формулы и примеры (9 класс) в основном используют классическое определение, которое звучит так:

  • Вероятность ситуации А равняется отношению числа исходов, что благоприятствуют ее появлению, к числу всех возможных исходов.

Формула выглядит так: Р(А)=m/n.

А - собственно, событие. Если появляется случай, противоположный А, его можно записывать как Ā или А 1 .

m - количество возможных благоприятных случаев.

n - все события, которые могут произойти.

Например, А = «вытащить карту червовой масти». В стандартной колоде 36 карт, 9 из них червовой масти. Соответственно, формула решения задания будет иметь вид:

Р(А)=9/36=0,25.

В итоге вероятность того, что из колоды вытянут карту червовой масти, составит 0,25.

К высшей математике

Теперь стало немного известно, что такое теория вероятности, формулы и примеры решения заданий, которые попадаются в школьной программе. Однако теория вероятностей встречается и в высшей математике, которая преподается в вузах. Чаще всего там оперируют геометрическими и статистическими определениями теории и сложными формулами.

Очень интересна теория вероятности. Формулы и примеры (высшая математика) лучше начинать изучать с малого - со статистического (или частотного) определения вероятности.

Статистический подход не противоречит классическому, а немного расширяет его. Если в первом случае нужно было определить, с какой долей вероятности произойдет событие, то в этом методе необходимо указать, как часто оно будет происходить. Здесь вводится новое понятие «относительная частота», которую можно обозначить W n (A). Формула ничем не отличается от классической:

Если классическая формула вычисляется для прогнозирования, то статистическая - согласно результатам эксперимента. Возьмем, к примеру, небольшое задание.

Отдел технологического контроля проверяет изделия на качество. Среди 100 изделий нашли 3 некачественных. Как найти вероятность частоты качественного товара?

А = «появление качественного товара».

W n (A)=97/100=0,97

Таким образом, частота качественного товара составляет 0,97. Откуда взяли 97? Из 100 товаров, которые проверили, 3 оказались некачественными. От 100 отнимаем 3, получаем 97, это количество качественного товара.

Немного о комбинаторике

Еще один метод теории вероятности называют комбинаторикой. Его основной принцип состоит в том, что если определенный выбор А можно осуществить m разными способами, а выбор В - n разными способами, то выбор А и В можно осуществить путем умножения.

Например, из города А в город В ведет 5 дорог. Из города В в город С ведет 4 пути. Сколькими способами можно доехать из города А в город С?

Все просто: 5х4=20, то есть двадцатью разными способами можно добраться из точки А в точку С.

Усложним задание. Сколько существует способов раскладывания карт в пасьянсе? В колоде 36 карт - это исходная точка. Чтобы узнать количество способов, нужно от исходной точки «отнимать» по одной карте и умножать.

То есть 36х35х34х33х32…х2х1= результат не вмещается на экран калькулятора, поэтому его можно просто обозначить 36!. Знак «!» возле числа указывает на то, что весь ряд чисел перемножается между собой.

В комбинаторике присутствуют такие понятия, как перестановка, размещение и сочетание. Каждое из них имеет свою формулу.

Упорядоченный набор элементов множества называют размещением. Размещения могут быть с повторениями, то есть один элемент можно использовать несколько раз. И без повторений, когда элементы не повторяются. n - это все элементы, m - элементы, которые участвуют в размещении. Формула для размещения без повторений будет иметь вид:

A n m =n!/(n-m)!

Соединения из n элементов, которые отличаются только порядком размещения, называют перестановкой. В математике это имеет вид: Р n = n!

Сочетаниями из n элементов по m называют такие соединения, в которых важно, какие это были элементы и каково их общее количество. Формула будет иметь вид:

A n m =n!/m!(n-m)!

Формула Бернулли

В теории вероятности, так же как и в каждой дисциплине, имеются труды выдающихся в своей области исследователей, которые вывели ее на новый уровень. Один из таких трудов - формула Бернулли, что позволяет определять вероятность появления определенного события при независимых условиях. Это говорит о том, что появление А в эксперименте не зависит от появления или не появления того же события в ранее проведенных или последующих испытаниях.

Уравнение Бернулли:

P n (m) = C n m ×p m ×q n-m .

Вероятность (р) появления события (А) неизменна для каждого испытания. Вероятность того, что ситуация произойдет ровно m раз в n количестве экспериментов, будет вычисляться формулой, что представлена выше. Соответственно, возникает вопрос о том, как узнать число q.

Если событие А наступает р количество раз, соответственно, оно может и не наступить. Единица - это число, которым принято обозначать все исходы ситуации в дисциплине. Поэтому q - число, которое обозначает возможность ненаступления события.

Теперь вам известна формула Бернулли (теория вероятности). Примеры решения задач (первый уровень) рассмотрим далее.

Задание 2: Посетитель магазина сделает покупку с вероятностью 0,2. В магазин зашли независимым образом 6 посетителей. Какова вероятность того, что посетитель сделает покупку?

Решение: Поскольку неизвестно, сколько посетителей должны сделать покупку, один или все шесть, необходимо просчитать все возможные вероятности, пользуясь формулой Бернулли.

А = «посетитель совершит покупку».

В этом случае: р = 0,2 (как указано в задании). Соответственно, q=1-0,2 = 0,8.

n = 6 (поскольку в магазине 6 посетителей). Число m будет меняться от 0 (ни один покупатель не совершит покупку) до 6 (все посетители магазина что-то приобретут). В итоге получим решение:

P 6 (0) = C 0 6 ×p 0 ×q 6 =q 6 = (0,8) 6 = 0,2621.

Ни один из покупателей не совершит покупку с вероятностью 0,2621.

Как еще используется формула Бернулли (теория вероятности)? Примеры решения задач (второй уровень) далее.

После вышеприведенного примера возникают вопросы о том, куда делись С и р. Относительно р число в степени 0 будет равно единице. Что касается С, то его можно найти формулой:

C n m = n! / m!(n-m)!

Поскольку в первом примере m = 0, соответственно, С=1, что в принципе не влияет на результат. Используя новую формулу, попробуем узнать, какова вероятность покупки товаров двумя посетителями.

P 6 (2) = C 6 2 ×p 2 ×q 4 = (6×5×4×3×2×1) / (2×1×4×3×2×1) × (0,2) 2 × (0,8) 4 = 15 × 0,04 × 0,4096 = 0,246.

Не так уж и сложна теория вероятности. Формула Бернулли, примеры которой представлены выше, прямое тому доказательство.

Формула Пуассона

Уравнение Пуассона используется для вычисления маловероятных случайных ситуаций.

Основная формула:

P n (m)=λ m /m! × e (-λ) .

При этом λ = n х p. Вот такая несложная формула Пуассона (теория вероятности). Примеры решения задач рассмотрим далее.

Задание 3 : На заводе изготовили детали в количестве 100000 штук. Появление бракованной детали = 0,0001. Какова вероятность, что в партии будет 5 бракованных деталей?

Как видим, брак - это маловероятное событие, в связи с чем для вычисления используется формула Пуассона (теория вероятности). Примеры решения задач подобного рода ничем не отличаются от других заданий дисциплины, в приведенную формулу подставляем необходимые данные:

А = «случайно выбранная деталь будет бракованной».

р = 0,0001 (согласно условию задания).

n = 100000 (количество деталей).

m = 5 (бракованные детали). Подставляем данные в формулу и получаем:

Р 100000 (5) = 10 5 /5! Х е -10 = 0,0375.

Так же как и формула Бернулли (теория вероятности), примеры решений с помощью которой написаны выше, уравнение Пуассона имеет неизвестное е. По сути его можно найти формулой:

е -λ = lim n ->∞ (1-λ/n) n .

Однако есть специальные таблицы, в которых находятся практически все значения е.

Теорема Муавра-Лапласа

Если в схеме Бернулли количество испытаний достаточно велико, а вероятность появления события А во всех схемах одинакова, то вероятность появления события А определенное количество раз в серии испытаний можно найти формулой Лапласа:

Р n (m)= 1/√npq x ϕ(X m).

X m = m-np/√npq.

Чтобы лучше запомнилась формула Лапласа (теория вероятности), примеры задач в помощь ниже.

Сначала найдем X m , подставляем данные (они все указаны выше) в формулу и получим 0,025. При помощи таблиц находим число ϕ(0,025), значение которого 0,3988. Теперь можно подставлять все данные в формулу:

Р 800 (267) = 1/√(800 х 1/3 х 2/3) х 0,3988 = 3/40 х 0,3988 = 0,03.

Таким образом, вероятность того, что рекламная листовка сработает ровно 267 раз, составляет 0,03.

Формула Байеса

Формула Байеса (теория вероятности), примеры решения заданий с помощью которой будут приведены ниже, представляет собой уравнение, которое описывает вероятность события, опираясь на обстоятельства, которые могли быть связаны с ним. Основная формула имеет следующий вид:

Р (А|B) = Р (В|А) х Р (А) / Р (В).

А и В являются определенными событиями.

Р(А|B) - условная вероятность, то есть может произойти событие А при условии, что событие В истинно.

Р (В|А) - условная вероятность события В.

Итак, заключительная часть небольшого курса «Теория вероятности» - формула Байеса, примеры решений задач с которой ниже.

Задание 5 : На склад привезли телефоны от трех компаний. При этом часть телефонов, которые изготавливаются на первом заводе, составляет 25%, на втором - 60%, на третьем - 15%. Известно также, что средний процент бракованных изделий у первой фабрики составляет 2%, у второй - 4%, и у третьей - 1%. Необходимо найти вероятность того, что случайно выбранный телефон окажется бракованным.

А = «случайно взятый телефон».

В 1 - телефон, который изготовила первая фабрика. Соответственно, появятся вводные В 2 и В 3 (для второй и третьей фабрик).

В итоге получим:

Р (В 1) = 25%/100% = 0,25; Р(В 2) = 0,6; Р (В 3) = 0,15 - таким образом мы нашли вероятность каждого варианта.

Теперь нужно найти условные вероятности искомого события, то есть вероятность бракованной продукции в фирмах:

Р (А/В 1) = 2%/100% = 0,02;

Р(А/В 2) = 0,04;

Р (А/В 3) = 0,01.

Теперь подставим данные в формулу Байеса и получим:

Р (А) = 0,25 х 0,2 + 0,6 х 0,4 + 0,15 х 0,01= 0,0305.

В статье представлена теория вероятности, формулы и примеры решения задач, но это только вершина айсберга обширной дисциплины. И после всего написанного логично будет задаться вопросом о том, нужна ли теория вероятности в жизни. Простому человеку сложно ответить, лучше спросить об этом у того, кто с ее помощью не единожды срывал джек-пот.

Знать, как оценить вероятность того или иного события на основе коэффициентов, крайне важно для выбора правильной ставки. Если вы не понимаете, как перевести букмекерский коэффициент в вероятность, то никогда не сможете определить, как соотносится букмекерский коэффициент с реальными шансами того, что событие состоится. Следует понимать, если вероятность события по версии букмекеров ниже, чем вероятность этого же события по вашей собственной версии, ставка на это событие будет ценной. Сравнить коэффициенты на разные события можно на сайте Odds.ru .

1.1. Типы коэффициентов

Букмекерские конторы, как правило, предлагают три типа коэффициентов – десятичный, дробный и американский. Разберем каждую из разновидностей.

1.2. Десятичные коэффициенты

Десятичные коэффициенты при умножении на размер ставки позволяют рассчитать всю сумму, которую вы получите на руки в случае выигрыша. К примеру, если вы поставили 1 доллар на коэффициент 1,80, в случае выигрыша вы получите 1 доллар 80 центов (1 доллар – возвращенная сумма ставки, 0,80 – выигрыш по ставке, он же ваша чистая прибыль).

То есть вероятность исхода, по версии букмекеров, составляет 55%.

1.3. Дробные коэффициенты

Дробные коэффициенты – наиболее традиционный вид коэффициентов. В числителе показана потенциальная сумма чистого выигрыша. В знаменателе – сумма ставки, которую нужно сделать, чтобы этот самый выигрыш получить. К примеру, коэффициент 7/2 означает, что для того, чтобы получить чистый выигрыш в размере 7 долларов, вам необходимо поставить 2 доллара.

Для того чтобы рассчитать вероятность события на основе десятичного коэффициента, следует провести простые вычисления – знаменатель разделить на сумму числителя и знаменателя. Для вышеобозначенного коэффициента 7/2 расчет будет таким:

2 / (7+2) = 2 / 9 = 0,22

То есть вероятность исхода, по версии букмекеров, составляет 22%.

1.4. Американские коэффициенты

Данный вид коэффициентов популярен в Северной Америке. На первый взгляд, они кажутся довольно сложными и непонятными, но не стоит пугаться. Понимание американских коэффициентов может вам пригодиться, например, при игре в американских казино, для понимания котировок, демонстрируемых в североамериканских спортивных трансляциях. Разберем, как оценить вероятность исхода на основе американских коэффициентов.

В первую очередь надо понимать, что американские коэффициенты бывают положительными и отрицательными. Отрицательный американский коэффициент всегда идет в формате, к примеру, «-150». Это означает, что для того, чтобы получить 100 долларов чистой прибыли (выигрыш), необходимо поставить 150 долларов.

Положительный американский коэффициент рассчитывается наоборот. К примеру, у нас есть коэффициент «+120». Это означает, что для того, чтобы получить 120 долларов чистой прибыли (выигрыш), вам необходимо поставить 100 долларов.

Расчет вероятности на основе отрицательных американских коэффициентов делается по следующей формуле:

(-(отрицательный американский коэффициент)) / ((-(отрицательный американский коэффициент)) + 100)

(-(-150)) / ((-(-150)) + 100) = 150 / (150 + 100) = 150 / 250 = 0,6

То есть вероятность события, на которое дается отрицательный американский коэффициент «-150», составляет 60%.

Теперь рассмотрим аналогичные вычисления для положительного американского коэффициента. Вероятность в этом случае рассчитывается по следующей формуле:

100 / (положительный американский коэффициент + 100)

100 / (120 + 100) = 100 / 220 = 0.45

То есть вероятность события, на которое дается положительный американский коэффициент «+120», составляет 45%.

1.5. Как переводить коэффициенты из одного формата в другой?

Умение переводить коэффициенты из одного формата в другой может впоследствии сослужить вам хорошую службу. Как ни странно, до сих пор есть конторы, в которых коэффициенты не конвертируются и показаны лишь в одном, непривычном для нас формате. Рассмотрим на примерах, как это делать. Но для начала нам надо научиться вычислять вероятность исхода на основе данного нам коэффициента.

1.6. Как на основе вероятности рассчитать десятичный коэффициент?

Здесь все очень просто. Необходимо 100 разделить на вероятность события в процентном отношении. То есть, если предполагаемая вероятность события составляет 60%, вам надо:

При предполагаемой вероятности события в 60% десятичный коэффициент будет составлять 1,66.

1.7. Как на основе вероятности рассчитать дробный коэффициент?

В данном случае необходимо 100 разделить на вероятность события и от полученного результата отнять единицу. К примеру, вероятность события составляет 40%:

(100 / 40) — 1 = 2,5 — 1 = 1,5

То есть мы получаем дробный коэффициент 1,5/1 или, для удобства счета, – 3/2.

1.8. Как на основе вероятного исхода рассчитать американский коэффициент?

Здесь многое будет зависеть от вероятности события – будет ли она более 50% или менее. Если вероятность события более 50%, то расчет будет производиться по такой формуле:

— ((вероятность) / (100 — вероятность)) * 100

Например, если вероятность события составляет 80%, то:

— (80 / (100 — 80)) * 100 = — (80 / 20) * 100 = -4 * 100 = (-400)

При предполагаемой вероятности события в 80% мы получили отрицательный американский коэффициент «-400».

Если вероятность события менее 50 процентов, то формула будет следующей:

((100 — вероятность) / вероятность) * 100

Например, если вероятность события составляет 40%, то:

((100-40) / 40) * 100 = (60 / 40) * 100 = 1,5 * 100 = 150

При предполагаемой вероятности события в 40% мы получили положительный американский коэффициент «+150».

Эти вычисления помогут вам лучше понять концепцию ставок и коэффициентов, научиться оценивать истинную стоимость той или иной ставки.

Понимаю, что всем хочется заранее знать, как завершится спортивное мероприятие, кто одержит победу, а кто проиграет. Обладая подобной информацией, можно без страха делать ставки на спортивные мероприятия. Но можно ли вообще и если да, то как рассчитать вероятность события?

Вероятность – это величина относительная, поэтому не может с точностью говорить о каком-либо событии. Данная величина позволяет проанализировать и оценить необходимость совершения ставки на то или иное соревнование. Определение вероятностей – это целая наука, требующая тщательного изучения и понимания.

Коэффициент вероятности в теории вероятности

В ставках на спорт есть несколько вариантов исхода соревнования:

  • победа первой команды;
  • победа второй команды;
  • ничья;
  • тотал.

У каждого исхода соревнования есть своя вероятность и частота, с которой данное событие совершится при условии сохранения начальных характеристик. Как уже говорили ранее, невозможно точно рассчитать вероятность какого-либо события – оно может совпасть, а может и не совпасть. Таким образом, ваша ставка может как выиграть, так и проиграть.

Точного 100% предугадывания результатов соревнования не может быть, так как на исход матча влияет множество факторов. Естественно, и букмекеры не знают заранее исход матча и лишь предполагают результат, принимая решение на своей системе анализа и предлагают определенные коэффициенты для ставок.

Как посчитать вероятность события?

Допустим, что коэффициент букмекера равен 2. 1/2 – получаем 50%. Получается, что коэффициент 2 равен вероятности 50%. По тому же принципу можно получить безубыточный коэффициент вероятности – 1/вероятность.

Многие игроки думают, что после нескольких повторяющихся поражений, обязательно произойдет выигрыш — это ошибочное мнение. Вероятность выигрыша ставки не зависит от количества поражений. Даже если вы выбрасываете несколько орлов подряд в игре с монеткой, вероятность выбрасывания решки останется прежней – 50%.



Статьи по теме: