История векторного произведения. Векторное произведение векторов, определение, свойства

Перед тем, как дать понятие векторного произведения, обратимся к вопросу о ориентации упорядоченной тройки векторов a → , b → , c → в трехмерном пространстве.

Отложим для начала векторы a → , b → , c → от одной точки. Ориентация тройки a → , b → , c → бывает правой или левой, в зависимости от направления самого вектора c → . От того, в какую сторону осуществляется кратчайший поворот от вектора a → к b → с конца вектора c → , будет определен вид тройки a → , b → , c → .

Если кратчайший поворот осуществляется против часовой стрелки, то тройка векторов a → , b → , c → называется правой , если по часовой стрелке – левой .

Далее возьмем два не коллинеарных вектора a → и b → . Отложим затем от точки A векторы A B → = a → и A C → = b → . Построим вектор A D → = c → , который одновременно перпендикулярный одновременно и A B → и A C → . Таким образом, при построении самого вектора A D → = c → мы можем поступить двояко, задав ему либо одно направление, либо противоположное (смотрите иллюстрацию).

Упорядоченная тройка векторов a → , b → , c → может быть, как мы выяснили правой или левой в зависимости от направления вектора.

Из вышесказанного можем ввести определение векторного произведения. Данное определение дается для двух векторов, определенных в прямоугольной системе координат трехмерного пространства.

Определение 1

Векторным произведением двух векторов a → и b → будем называть такой вектор заданный в прямоугольной системе координат трехмерного пространства такой, что:

  • если векторы a → и b → коллинеарны, он будет нулевым;
  • он будет перпендикулярен и вектору a → ​​​​ и вектору b → т.е. ∠ a → c → = ∠ b → c → = π 2 ;
  • его длина определяется по формуле: c → = a → · b → · sin ∠ a → , b → ;
  • тройка векторов a → , b → , c → имеет такую же ориентацию, что и заданная система координат.

Векторное произведение векторов a → и b → имеет следущее обозначение: a → × b → .

Координаты векторного произведения

Так как любой вектор имеет определенные координаты в системе координат, то можно ввести второе определение векторного произведения, которое позволит находить его координаты по заданным координатам векторов.

Определение 2

В прямоугольной системе координат трехмерного пространства векторным произведением двух векторов a → = (a x ; a y ; a z) и b → = (b x ; b y ; b z) называют вектор c → = a → × b → = (a y · b z - a z · b y) · i → + (a z · b x - a x · b z) · j → + (a x · b y - a y · b x) · k → , где i → , j → , k → являются координатными векторами.

Векторное произведение можно представит как определитель квадратной матрицы третьего порядка, где первая строка есть векторы орты i → , j → , k → , вторая строка содержит координаты вектора a → , а третья – координаты вектора b → в заданной прямоугольной системе координат, данный определитель матрицы выглядит так: c → = a → × b → = i → j → k → a x a y a z b x b y b z

Разложив данный определитель по элементам первой строки, получим равенство: c → = a → × b → = i → j → k → a x a y a z b x b y b z = a y a z b y b z · i → - a x a z b x b z · j → + a x a y b x b y · k → = = a → × b → = (a y · b z - a z · b y) · i → + (a z · b x - a x · b z) · j → + (a x · b y - a y · b x) · k →

Свойства векторного произведения

Известно, что векторное произведение в координатах представляется как определитель матрицы c → = a → × b → = i → j → k → a x a y a z b x b y b z , то на базе свойств определителя матрицы выводятся следующие свойства векторного произведения:

  1. антикоммутативность a → × b → = - b → × a → ;
  2. дистрибутивность a (1) → + a (2) → × b = a (1) → × b → + a (2) → × b → или a → × b (1) → + b (2) → = a → × b (1) → + a → × b (2) → ;
  3. ассоциативность λ · a → × b → = λ · a → × b → или a → × (λ · b →) = λ · a → × b → , где λ - произвольное действительное число.

Данные свойства имеют не сложные доказательства.

Для примера можем доказать свойство антикоммутативности векторного произведения.

Доказательство антикоммутативности

По определению a → × b → = i → j → k → a x a y a z b x b y b z и b → × a → = i → j → k → b x b y b z a x a y a z . А если две строчки матрицы переставить местами, то значение определителя матрицы должно меняется на противоположное,следовательно, a → × b → = i → j → k → a x a y a z b x b y b z = - i → j → k → b x b y b z a x a y a z = - b → × a → , что и доказывает антикоммутативность векторного произведения.

Векторное произведение – примеры и решения

В большинстве случаев встречаются три типа задач.

В задачах первого типа обычно заданы длины двух векторов и угол между ними, а нужно найти длину векторного произведения. В этом случае пользуются следующей формулой c → = a → · b → · sin ∠ a → , b → .

Пример 1

Найдите длину векторного произведения векторов a → и b → , если известно a → = 3 , b → = 5 , ∠ a → , b → = π 4 .

Решение

С помощью определения длины векторного произведения векторов a → и b → решим данную задач: a → × b → = a → · b → · sin ∠ a → , b → = 3 · 5 · sin π 4 = 15 2 2 .

Ответ: 15 2 2 .

Задачи второго типа имеют связь с координатами векторов, в них векторное произведение, его длина и т.д. ищутся через известные координаты заданных векторов a → = (a x ; a y ; a z) и b → = (b x ; b y ; b z) .

Для такого типа задач, можно решить массу вариантов заданий. Например, могут быть заданы не координаты векторов a → и b → , а их разложения по координатным векторам вида b → = b x · i → + b y · j → + b z · k → и c → = a → × b → = (a y · b z - a z · b y) · i → + (a z · b x - a x · b z) · j → + (a x · b y - a y · b x) · k → , или векторы a → и b → могут быть заданы координатами точек их начала и конца.

Рассмотрим следующие примеры.

Пример 2

В прямоугольной системе координат заданы два вектора a → = (2 ; 1 ; - 3) , b → = (0 ; - 1 ; 1) . Найдите их векторное произведение.

Решение

По второму определению найдем векторное произведение двух векторов в заданных координатах: a → × b → = (a y · b z - a z · b y) · i → + (a z · b x - a x · b z) · j → + (a x · b y - a y · b x) · k → = = (1 · 1 - (- 3) · (- 1)) · i → + ((- 3) · 0 - 2 · 1) · j → + (2 · (- 1) - 1 · 0) · k → = = - 2 i → - 2 j → - 2 k → .

Если записать векторное произведение через определитель матрицы, то решение данного примера выглядит следующим образом: a → × b → = i → j → k → a x a y a z b x b y b z = i → j → k → 2 1 - 3 0 - 1 1 = - 2 i → - 2 j → - 2 k → .

Ответ: a → × b → = - 2 i → - 2 j → - 2 k → .

Пример 3

Найдите длину векторного произведения векторов i → - j → и i → + j → + k → , где i → , j → , k → - орты прямоугольной декартовой системы координат.

Решение

Для начала найдем координаты заданного векторного произведения i → - j → × i → + j → + k → в данной прямоугольной системе координат.

Известно, что векторы i → - j → и i → + j → + k → имеют координаты (1 ; - 1 ; 0) и (1 ; 1 ; 1) соответственно. Найдем длину векторного произведения при помощи определителя матрицы, тогда имеем i → - j → × i → + j → + k → = i → j → k → 1 - 1 0 1 1 1 = - i → - j → + 2 k → .

Следовательно, векторное произведение i → - j → × i → + j → + k → имеет координаты (- 1 ; - 1 ; 2) в заданной системе координат.

Длину векторного произведения найдем по формуле (см. в разделе нахождение длины вектора): i → - j → × i → + j → + k → = - 1 2 + - 1 2 + 2 2 = 6 .

Ответ: i → - j → × i → + j → + k → = 6 . .

Пример 4

В прямоугольной декартовой системе координат заданы координаты трех точек A (1 , 0 , 1) , B (0 , 2 , 3) , C (1 , 4 , 2) . Найдите какой-нибудь вектор, перпендикулярный A B → и A C → одновременно.

Решение

Векторы A B → и A C → имеют следующие координаты (- 1 ; 2 ; 2) и (0 ; 4 ; 1) соответственно. Найдя векторное произведение векторов A B → и A C → , очевидно, что оно является перпендикулярным вектором по определению и к A B → ​​​​​ и к A C → , то есть, является решением нашей задачи. Найдем его A B → × A C → = i → j → k → - 1 2 2 0 4 1 = - 6 i → + j → - 4 k → .

Ответ: - 6 i → + j → - 4 k → . - один из перпендикулярных векторов.

Задачи третьего типа ориентированы на использование свойств векторного произведения векторов. После применения которых, будем получать решение заданной задачи.

Пример 5

Векторы a → и b → перпендикулярны и их длины равны соответственно 3 и 4 . Найдите длину векторного произведения 3 · a → - b → × a → - 2 · b → = 3 · a → × a → - 2 · b → + - b → × a → - 2 · b → = = 3 · a → × a → + 3 · a → × - 2 · b → + - b → × a → + - b → × - 2 · b → .

Решение

По свойству дистрибутивности векторного произведения мы можем записать 3 · a → - b → × a → - 2 · b → = 3 · a → × a → - 2 · b → + - b → × a → - 2 · b → = = 3 · a → × a → + 3 · a → × - 2 · b → + - b → × a → + - b → × - 2 · b →

По свойству ассоциативности вынесем числовые коэффициенты за знак векторных произведений в последнем выражении: 3 · a → × a → + 3 · a → × - 2 · b → + - b → × a → + - b → × - 2 · b → = = 3 · a → × a → + 3 · (- 2) · a → × b → + (- 1) · b → × a → + (- 1) · (- 2) · b → × b → = = 3 · a → × a → - 6 · a → × b → - b → × a → + 2 · b → × b →

Векторные произведения a → × a → и b → × b → равны 0, так как a → × a → = a → · a → · sin 0 = 0 и b → × b → = b → · b → · sin 0 = 0 , тогда 3 · a → × a → - 6 · a → × b → - b → × a → + 2 · b → × b → = - 6 · a → × b → - b → × a → . .

Из антикоммутативности векторного произведения следует - 6 · a → × b → - b → × a → = - 6 · a → × b → - (- 1) · a → × b → = - 5 · a → × b → . .

Воспользовавшись свойствами векторного произведения, получаем равенство 3 · a → - b → × a → - 2 · b → = = - 5 · a → × b → .

По условию векторы a → и b → перпендикулярны, то есть угол между ними равен π 2 . Теперь остается лишь подставить найденные значения в соответствующие формулы: 3 · a → - b → × a → - 2 · b → = - 5 · a → × b → = = 5 · a → × b → = 5 · a → · b → · sin (a → , b →) = 5 · 3 · 4 · sin π 2 = 60 .

Ответ: 3 · a → - b → × a → - 2 · b → = 60 .

Длина векторного произведения векторов по орпеделению равна a → × b → = a → · b → · sin ∠ a → , b → . Так как уже известно (из школьного курса), что площадь треугольника равна половине произведения длин двух его сторон умноженное на синус угла между данными сторонами. Следовательно, длина векторного произведения равна площади параллелограмма - удвоенного треугольника, а именно произведению сторон в виде векторов a → и b → , отложенные от одной точки, на синус угла между ними sin ∠ a → , b → .

Это и есть геометрический смысл векторного произведения.

Физический смысл векторного произведения

В механике, одном из разделов физики, благодаря векторному произведению можно определить момент силы относительно точки пространства.

Определение 3

Под моментом силы F → , приложенной к точке B , относительно точки A будем понимать следующее векторное произведение A B → × F → .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Определение. Векторным произведением вектора а на вектор b называется вектор, обозначаемый символом [«, Ь] (или л х Ь), такой, что 1) длина вектора [а, b] равна (р, где у - угол между векторами а и b (рис.31); 2) вектор [а, Ь) перпендикулярен векторам а и Ь,т.е. перпендикулярен плоскости этих векторов; 3) вектор [а, Ь] направлен так, что из конца этого вектора кратчайший поворот от а к b виден происходящим против часовой стрелки (рис. 32). Рис. 32 Рис.31 Иными словами, векторы a, b и [а,Ь) образуют правую тройку векторов, т.е. расположены так, как большой, указательный и средний пальцы правой руки. В случае, если векторы а и b коллинеарны, будем считать, что [а, Ь] = 0. По определению длина векторного произведения численно равна площади Sa параллелограмма (рис. 33), построенного на перемножаемых векторах а и b как на сторонах: 6.1. Свойства векторного произведения 1. Векторное произведение равно нулевому вектору тогда и толькотогда, когда по крайней мере один из перемножаемых векторов является нулевым или когда эти векторы коллинеарны (если векторы а и b коллинеарны, то угол между ними равен либо 0, либо 7г). Это легко получить из того, что Если считать нулевой вектор коллинсарным любому вектору, то условие коллинеарности векторов а и b можно выразить так 2. Векторное произведение антикоммутативно, т. е. всегда. В самом деле, векторы (а, Ь) и имеют одинаковую длину и коллинеарны. Направления же этих векторов противоположны, так как из конца вектора [а, Ь] кратчайший поворот от а к b будет виден происходящим против часовой стрелки, а из конца вектора [Ь, а] - по часовой стрелке (рис. 34). 3. Векторное произведение обладает распределительным свойством по отношению к сложению 4. Числовой множитель Л можно выносить за знак векторного произведения 6.2. Векторное произведение векторов, заданных координатами Пусть векторы а и Ь заданы своими координатами в базисе. Пользуясь распределительным свойством векторного произведения, находим Векторное произведение векторов заданных координатами. Смешанное произведение. Выпишем векторные произведения координатных ортов (рис. 35): Поэтому для векторного произведения векторов а и b получаем из формулы (3) следующее выражение Формулу (4) можно записать в символической, легко запоминающейся форме, если воспользоваться определителем 3-го порядка: Разлагая этот определитель по элементам 1-й строки, получим (4). Примеры. 1. Найти площадь параллелограмма, построенного на векторах Искомая площадь Поэтому находим = откуда 2. Найти площадь треугольника (рис. 36). Ясно, что площадь б"д треугольника ОАО равна половине площади S параллелограмма О АС В. Вычисляя векторное произведение (а, Ь| векторов а = OA и b = оЪ, получаем Отсюда Замечание. Векторное произведение не ассоциативно, т.е. равенство ((а, Ь),с) = [а, |Ь,с)) в обшем случае неверно. Например, при а = ss j имеем § 7. Смешанное произведение векторов Пусть имеем три вектора а, Ь и с. Перемножим векторы а и 1> вскторно. В результате получим вектор [а, 1>]. Умножим его скалярно на вектор с: (к Ь), с). Число ([а, Ь], е) называется смешанным произведением векторов а, Ь. с и обозначается символом (а, 1), е). 7.1. Геометрический смысл смешанного произведения Отложим векторы а, b и с отобшей точки О (рис. 37). Если все четыре точки О, А, В, С лежат в одной плоскости (векторы a, b и с называются в этом случае компланарными), то смешанное произведение ([а, Ь], с) = 0. Это следует из того, что вектор [а, Ь| перпендикулярен плоскости, в которой лежат векторы а и 1», а значит, и вектору с. / Если же точки О, А, В, С не лежат в одной плос-кости (векторы a, b и с некомпланарны), построим на ребрах OA, OB и ОС параллелепипед (рис. 38 а). По определению векторного произведения имеем (a,b) = So с, где So - площадь параллелограмма OADB, а с - единичный вектор, перпендикулярный векторам а и Ь и такой, что тройка а, Ь, с - правая, т.е. векторы a, b и с расположены соответственно как большой, указательный и средний пальцы правой руки (рис. 38 б). Умножая обе части последнего равенства справа скалярно на вектор с, получаем, что Векторное произведение векторов заданных координатами. Смешанное произведение. Число ргс с равно высоте h построенного параллелепипеда, взятого со знаком «+», если угол между векторами с и с острый (тройка а, Ь, с - правая), и со знаком «-», если угол - тупой (тройка а, Ь, с - левая), так что Тем самым, смешанное произведение векторов а, Ь и с равно объему V параллелепипеда, построенного на этих векторах как на ребрах, если тройка а, Ъ, с - правая, и -V, если тройка а, Ь, с - левая. Исходя из геометрического смысла смешанного произведения, можно заключить, что, перемножая тс же векторы a, b и с в любом другом порядке, мы всегда будем получать либо +7, либо -К. Знак произ- Рис. 38 ведения будет зависеть лишь оттого, какую тройку образуют перемножаемые векторы - правую или левую. Если векторы а, Ь, с образуют правую тройку, то правыми будут также тройки Ь, с, а и с, а, Ь. В то же время все три тройки Ь, а, с; а, с, Ь и с, Ь, а - левые. Тем самым, (а,Ь, с) = (Ь,с, а) = (с,а,Ь) = -(Ь,а,с) = -(а,с,Ь) = -(с,Ь,а). Ешераз подчеркнем, что смешанное произведение векторов равно нулютогдаи только тогда, когда перемножаемые векторы а, Ь, с компланарны: {а, Ь, с компланарны} 7.2. Смешанное произведение в координатах Пусть векторы а, Ь, с заданы своими координатами в базисе i, j, k: а = {x\,y\,z]}, b= {x2,y2>z2}, c = {х3,уз,23}. Найдем выражение для их смешанного произведения (а, Ь, с). Имеем смешанное произведение векторов, заданныхсвоими координатами в базисе i, J, к, равно определителю третьего порядка, строки которого составлены соответственно из координат первого, второго и третьего из перемножаемых векторов. Необходимое и достаточное условие компланарности векторов а у\, Z|}, b = {хъ У2. 22}, с = {жз, уз, 23} запишется в следующем виде У| z, аг2 у2 -2 =0. Уз Пример. Проверить, компланарны ли векторы „ = {7,4,6}, Ь = {2, 1,1}, с = {19, II, 17}. Рассматриваемые векторы будут компланарны или некомпланарны в зависимости от того, будет равен нулю или нет определитель Разлагая его по элементам первой строки, получим Д = 7- 6- 4- 15 + 6-3 = 0^- векторы n, Ь, с компланарны. 7.3. Двойное векторное произведение Двойное векторное произведение [а, [Ь, с]] представляет собой вектор, перпендикулярный к векторам а и [Ь, с]. Поэтому он лежит в плоскости векторов b и с и может быть разложен по этим векторам. Можно показать, что справедлива формула [а, [!>, с]] = Ь(а, е) - с(а, Ъ). Упражнения 1. Три вектора АВ = с, Ж? = о и СА = b служат сторонами треугольника. Выразить через a, b и с векторы, совпадающие с медианами AM, DN, CP треугольника. 2. Каким условием должны быть связаны векторы р и q, чтобы вектор р + q делил угол между ними пополам? Предполагается, что все три вектора отнесены к общему началу. 3. Вычислите длину диагоналей параллелограмма, построенного на векторах а = 5р + 2q и b = р - 3q, если известно, что |р| = 2v/2, |q| = 3 H-(p7ci) = f. 4. Обозначив через а и b стороны ромба, выходящие из общей вершины, докажите, что диагонали ромба взаимно перпендикулярны. 5. Вычислите скалярное произведение векторов а = 4i + 7j + 3k и b = 31 - 5j + k. 6. Найдите единичный вектор а0, параллельный вектору а = {6, 7, -6}. 7. Найдите проекцию вектора a = l+ j- kHa вектор b = 21 - j - 3k. 8. Найдите косинус угла между векторами IS «ж,если А(-4,0,4), В(-1,6,7), С(1,10.9). 9. Найдите единичный вектор р°, одновременно перпендикулярный вектору а = {3, 6, 8} и оси Ох. 10. Вычислите синус угла между диагоналями параллелофамма, построенного на векторах a = 2i+J-k, b=i-3j + k как на сторонах. Вычислите высоту h параллелепипеда, построенного на векторах а = 31 + 2j - 5k, b = i- j + 4knc = i-3j + к, если за основание взят параллелограмм, построенный на векторах а и I). Ответы

Очевидно, что в случае векторного произведения, имеет значение порядок, в котором берутся вектора, более того,

Так же, непосредственно из определения следует, что для любого скалярного множителя k (числа) верно следующее:

Векторное произведение коллинеарных векторов равно нулевому вектору. Более того, векторное произведение двух векторов равно нулю тогда и только тогда, когда они коллинеарны. (В случае, если один из них нулевой вектор необходимо вспомнить, что нулевой вектор коллинеарен любому вектору по определению).

Векторное произведение обладает распределительным свойством , то есть

Выражение векторного произведения через координаты векторов.

Пусть даны два вектора

(как найти координаты вектора по координатам его начала и конца - см. статью Скалярное произведение векторов , пункт Альтернативное определение скалярного произведения, или вычисление скалярного произведения двух векторов, заданных своими координатами. )

Зачем нужно векторное произведение?

Существует множество способов применения векторного произведения, например, как уже написано выше, вычислив векторное произведение двух векторов можно выяснить, коллинеарны ли они.

Или же его можно использовать как способ вычисления площади параллелограмма, построенного на этих векторах. Исходя из определения, длина результирующего вектора и есть площадь данного параллелограмма.

Также огромное количество применений существует в электричестве и магнетизме.

Он-лайн калькулятор векторного произведения.

Чтобы найти скалярное произведение двух векторов с помощью данного калькулятора, нужно ввести в первую строку по порядку координаты первого вектора, во вторую- второго. Координаты векторов могут быть вычислены по координатам их начала и конца (см. статью Скалярное произведение векторов , пункт Альтернативное определение скалярного произведения, или вычисление скалярного произведения двух векторов, заданных своими координатами. )

Свойства скалярного произведения

Скалярное произведение векторов, определение, свойства

Линейные операции над векторами.

Векторы, основные понятия, определения, линейные операции над ними

Вектором на плоскости называется упорядоченная пара ее точек, при этом первая точка называется началом, а вторая концом – вектора

Два вектора называются равными если они равны и сонаправлены.

Векторы, лежащие на одной прямой, называются сонаправленными если они сонаправленны с некоторым одним и тем же вектором, не лежащим на этой прямой.

Векторы, лежащие на одной прямой или на параллельных прямых называются коллинеарными, а коллинеарные но не сонаправленные – противоположно-направленные.

Векторы, лежащие на перпендикулярных прямых, называются ортогональными.

Определение 5.4 . Суммой a + b векторовa и b называется вектор, идущий из начала вектора а в конец вектора b , если начало вектора b совпадает с концом вектора а .

Определение 5.5 . Разностью а – b векторов а и b называется такой вектор с , который в сумме с вектором b дает вектор а .

Определение 5.6. Произведением ka вектора а на число k называется вектор b , коллинеарный векторуа , имеющий модуль, равный |k ||a |, и направление, совпадающее с направлением а при k >0 и противоположное а при k<0.

Свойства умножения вектора на число:

Свойство 1. k(a + b ) = ka + kb .

Свойство 2. (k + m) a = ka + ma .

Свойство 3. k(ma ) = (km) a .

Следствие. Если ненулевые векторы а и b коллинеарны, то существует такое число k , что b = ka .

Скалярным произведением двух ненулевых векторов a и b называется число (скаляр), равный произведению длин этих векторов на косинус угла φ между ними. Скалярное произведение можно обозначать различными способами, например, как ab , a · b , (a , b ), (a · b ). Таким образом, скалярное произведение равно:

a · b = |a | · |b | · cos φ

Если хотя бы один из векторов равен нулю, то скалярное произведение равно нулю.

· Свойство перестановки: a · b = b · a (от перестановки множителей скалярное произведение не меняется);

· Свойство распределения: a · (b · c ) = (a · b ) · c (результат не зависит от порядка умножения);

· Свойство сочетания (по отношению к скалярному множителю): (λ a ) · b = λ (a · b ).

· Свойство ортогональности (перпендикулярности): если вектора a и b ненулевые, то их скалярное произведение равно нулю, только когда эти векторы ортогональны (перпендикулярные друг к другу)a b ;

· Свойство квадрата: a · a = a 2 = |a | 2 (скалярное произведения вектора самого с собой равняется квадрату его модуля);

· Если координаты векторов a ={x 1 , y 1 , z 1 } и b ={x 2 , y 2 , z 2 }, то скалярное произведение равно a · b = x 1 x 2 + y 1 y 2 + z 1 z 2 .



Векторное проведение векторов. Определение : Под векторным произведением двух векторов и понимается вектор, для которого:

Модуль равен площади параллелограмма, построенного на данных векторах, т.е. , где угол между векторами и

Этот вектор перпендикулярен перемножаемым векторам, т.е.

Если векторы неколлинеарны, то они образуют правую тройку векторов.

Свойства векторного произведения :

1.При изменении порядка сомножителей векторное произведение меняет свой знак на обратный, сохраняя модуль, т.е.

2 .Векторный квадрат равен нуль-вектору, т.е.

3 .Скалярный множитель можно выносить за знак векторного произведения, т.е.

4 .Для любых трех векторов справедливо равенство

5 .Необходимое и достаточное условие коллинеарности двух векторов и :

Векторное произведение - это псевдовектор, перпендикулярный плоскости, построенной по двум сомножителям, являющийся результатом бинарной операции «векторное умножение» над векторами в трёхмерном Евклидовом пространстве. Векторное произведение не обладает свойствами коммутативности и ассоциативности (является антикоммутативным) и, в отличие от скалярного произведения векторов, является вектором. Широко используется во многих технических и физических приложениях. Например, момент импульса и сила Лоренца математически записываются в виде векторного произведения. Векторное произведение полезно для «измерения» перпендикулярности векторов - модуль векторного произведения двух векторов равен произведению их модулей, если они перпендикулярны, и уменьшается до нуля, если векторы параллельны либо антипараллельны.

Определить векторное произведение можно по-разному, и теоретически, в пространстве любой размерности n можно вычислить произведение n-1 векторов, получив при этом единственный вектор, перпендикулярный к ним всем. Но если произведение ограничить нетривиальными бинарными произведениями с векторным результатами, то традиционное векторное произведение определено только в трёхмерном и семимерном пространствах. Результат векторного произведения, как и скалярного, зависит от метрики Евклидова пространства.

В отличие от формулы для вычисления по координатам векторов скалярного произведения в трёхмерной прямоугольной системе координат, формула для векторного произведения зависит от ориентации прямоугольной системы координат или, иначе, её «хиральности».

Определение:
Векторным произведением вектора a на вектор b в пространстве R 3 называется вектор c , удовлетворяющий следующим требованиям:
длина вектора c равна произведению длин векторов a и b на синус угла φ между ними:
|c|=|a||b|sin φ;
вектор c ортогонален каждому из векторов a и b;
вектор c направлен так, что тройка векторов abc является правой;
в случае пространства R7 требуется ассоциативность тройки векторов a,b,c.
Обозначение:
c===a × b


Рис. 1. Площадь параллелограмма равна модулю векторного произведения

Геометрические свойства векторного произведения :
Необходимым и достаточным условием коллинеарности двух ненулевых векторов является равенство нулю их векторного произведения.

Модуль векторного произведения равняется площади S параллелограмма, построенного на приведённых к общему началу векторах a и b (см. рис.1).

Если e - единичный вектор, ортогональный векторам a и b и выбранный так, что тройка a,b,e - правая, а S - площадь параллелограмма, построенного на них (приведённых к общему началу), то для векторного произведения справедлива формула:
=S e


Рис.2. Объём параллелепипеда при использовании векторного и скалярного произведения векторов; пунктирные линии показывают проекции вектора c на a × b и вектора a на b × c, первым шагом является нахождение скалярных произведений

Если c - какой-нибудь вектор, π - любая плоскость, содержащая этот вектор, e - единичный вектор, лежащий в плоскости π и ортогональный к c,g - единичный вектор, ортогональный к плоскости π и направленный так, что тройка векторов ecg является правой, то для любого лежащего в плоскости π вектора a справедлива формула:
=Pr e a |c|g
где Pr e a проекция вектора e на a
|c|-модуль вектора с

При использовании векторного и скалярного произведений можно высчитать объём параллелепипеда, построенного на приведённых к общему началу векторах a, b и c . Такое произведение трех векторов называется смешанным.
V=|a (b×c)|
На рисунке показано, что этот объём может быть найден двумя способами: геометрический результат сохраняется даже при замене «скалярного» и «векторного» произведений местами:
V=a×b c=a b×c

Величина векторного произведения зависит от синуса угла между изначальными векторами, поэтому векторное произведение может восприниматься как степень «перпендикулярности» векторов также, как и скалярное произведение может рассматриваться как степень «параллельности». Векторное произведение двух единичных векторов равно 1 (единичному вектору), если изначальные векторы перпендикулярны, и равно 0 (нулевому вектору), если векторы параллельны либо антипараллельны.

Выражение для векторного произведения в декартовых координатах
Если два вектора a и b определены своими прямоугольными декартовыми координатами, а говоря точнее - представлены в ортонормированном базисе
a=(a x ,a y ,a z)
b=(b x ,b y ,b z)
а система координат правая, то их векторное произведение имеет вид
=(a y b z -a z b y ,a z b x -a x b z ,a x b y -a y b x)
Для запоминания этой формулы:
i =∑ε ijk a j b k
где ε ijk - символ Леви-Чивиты.



Статьи по теме: