Духовная жизнь в первой половине 20. Тенденции духовной жизни

Словом «индукция» в русском языке обозначает процессы возбуждения, наведения, создания чего-либо. В электротехнике этот термин применяется уже более двух столетий.

После знакомства с публикациями 1821 года, описывающими опыты датского ученого Эрстеда об отклонениях магнитной стрелки около проводника с электрическим током, Майкл Фарадей поставил перед собой задачу: преобразовать магнетизм в электричество .

Через 10 лет исследований он сформулировал основной закон электромагнитной индукции, объяснив, что внутри любого замкнутого контура наводится электродвижущая сила. Ее величина определяется скоростью изменения магнитного потока, пронизывающего рассматриваемый контур, но взятую со знаком минус.

Передача электромагнитных волн на расстояние

Первая догадка, которая осенила мозг ученого, не увенчалась практическим успехом.

Он расположил рядом два замкнутых проводника. Около одного установил магнитную стрелку в качестве индикатора проходящего тока, а в другой провод подал импульс от мощного гальванического источника того времени: вольтова столба.

Исследователь предполагал, что при импульсе тока в первом контуре изменяющееся в нем магнитное поле наведет во втором проводнике ток, который отклонит магнитную стрелку. Но, результат оказался отрицательным - индикатор не сработал. Вернее, ему не хватило чувствительности.

Мозг ученого предвидел создание и передачу электромагнитных волн на расстояние, которые сейчас используются в радиовещании, телевидении, беспроводном управлении, Wi-Fi технологиях и подобных устройствах. Его просто подвела несовершенная элементная база измерительных устройств того времени.

Производство электроэнергии

После проведения неудачного опыта Michael Faraday видоизменил условия эксперимента.

Для опыта Фарадей использовал две катушки с замкнутыми контурами. В первый контур он подавал электрический ток от источника, а во втором наблюдал за появлением ЭДС. Проходящий по виткам обмотки №1 ток создавал вокруг катушки магнитный поток, пронизывающий обмотку №2 и образовывающий в ней электродвижущую силу.

Во время эксперимента Фарадей:

  • включал импульсом подачу напряжения в цепь при неподвижных катушках;
  • при поданном токе вводил в нижнюю катушку верхнюю;
  • закреплял стационарно обмотку №1 и вводил в нее обмотку №2;
  • изменял скорость перемещения катушек относительно друг друга.

Во всех этих случаях он наблюдал проявление ЭДС индукции во второй катушке. И лишь при прохождении постоянного тока по обмотке №1 и неподвижных катушках наведения электродвижущей силы не было.

Ученый определил, что наводимая во второй катушке ЭДС зависит от скорости, с которой меняется магнитный поток. Она пропорциональна его величине.

Эта же закономерность полностью проявляется при прохождении замкнутого витка сквозь Под действием ЭДС в проводе образуется электрический ток.

Магнитный поток в рассматриваемом случае изменяется в контуре Sк, созданном замкнутой цепью.

Таким способом созданная Фарадеем разработка позволила поместить в магнитное поле вращающуюся токопроводящую рамку.

Ее затем сделали из большого количества витков, закрепили в подшипниках вращения. По концам обмотки вмонтировали токосъемные кольца и щетки, скользящие по ним, а через выводы на корпусе подключили нагрузку. Получился современный генератор переменного тока.

Его более простая конструкция создалась тогда, когда обмотку закрепили на стационарном корпусе, а вращать стали магнитную систему. В этом случае способ образования токов за счет никак не нарушался.

Принцип работы электродвигателей

Закон электромагнитной индукции, который обсновал Michael Faraday, позволил создать различные конструкции электрических двигателей. Они имеют сходное устройство с генераторами: подвижный ротор и статор, которые взаимодействуют между собой за счет вращающихся электромагнитных полей.

Трансформация электроэнергии

Майкл Фарадей определил возникновение наведенной электродвижущей силы и индукционного тока в рядом расположенной обмотке при изменении магнитного поля в соседней катушке.

Ток внутри близлежащей обмотки наводится при коммутациях цепи выключателя в катушке 1 и всегда присутствует во время работы генератора на обмотку 3.

На этом свойстве, получившем название взаимоиндукции , основана работа всех современных трансформаторных устройств.

У них для улучшения прохождения магнитного потока изолированные обмотки надеты на общий сердечник, обладающий минимальным магнитным сопротивлением. Его изготавливают из специальных сортов стали и формируют наборными тонкими листами в виде секций определенной формы, называют магнитопроводом.

Трансформаторы передают за счет взаимоиндукции энергию переменного электромагнитного поля из одной обмотки в другую так, что при этом происходит изменение, трансформация величины напряжения на входных и выходных его клеммах.

Соотношение количества витков в обмотках определяет коэффициент трансформации , а толщина провода, конструкция и объем материала сердечника - величину пропускаемой мощности, рабочий ток.

Работа индуктивностей

Проявление электромагнитной индукции наблюдается в катушке во время изменения в ней величины протекающего тока. Этот процесс получил название самоиндукции .

При включении выключателя на приведенной схеме индукционный ток видоизменяет характер прямолинейного нарастания рабочего тока в цепи, как и во время отключения.

Когда же к проводнику, смотанному в катушку, прикладывается не постоянное, а переменное напряжение, то через нее протекает уменьшенное индуктивным сопротивлением значение тока. Энергия самоиндукции сдвигает по фазе ток относительно приложенного напряжения.

Это явление используется в дросселях, которые предназначены для уменьшения больших токов, возникающих при определенных условиях работы оборудования. Такие устройства, в частности, применяются .

Конструктивная особенность магнитопровода у дросселя - разрез пластин, который создается для дополнительного повышения магнитного сопротивления магнитному потоку за счет образования воздушного зазора.

Дроссели с разрезным и регулируемым положением магнитопровода используются во многих радиотехнических и электрических устройствах. Довольно часто их можно встретить в конструкциях сварочных трансформаторов. Ими уменьшают величину электрической дуги, пропускаемой через электрод, до оптимального значения.

Индукционные печи

Явление электромагнитной индукции проявляется не только в проводах и обмотках, но и внутри любых массивных металлических предметов. Наводимые в них токи принято называть вихревыми. При работе трансформаторов и дросселей они вызывают нагрев магнитопровода и всей конструкции.

Для предотвращения этого явления сердечники изготавливают из тонких металлических листов и изолируют между собой слоем лака, препятствующим прохождению наведенных токов.

В обогревательных конструкциях вихревые токи не ограничивают, а создают для их прохождения наиболее благоприятные условия. широко применяются в промышленном производстве для создания высоких температур.

Электротехнические измерительные устройства

В энергетике продолжает работать большой класс индукционных приборов. Электрические счетчики с вращающимся алюминиевым диском, аналогичные конструкции реле мощности, успокоительные системы стрелочных измерительных приборов функционируют на основе принципа электромагнитной индукции.

Газовые магнитные генераторы

Если вместо замкнутой рамки в поле магнита перемещать токопроводящий газ, жидкость или плазму, то заряды электричества под действием магнитных силовых линий станут отклоняться в строго определенных направлениях, формируя электрический ток. Его магнитное поле на смонтированных электродных контактных пластинах наводит электродвижущую силу. Под ее действием в подключенной цепи к МГД-генератору создается электрический ток.

Так закон электромагнитной индукции проявляется в МГД-генераторах.

Здесь нет таких сложных вращающихся частей, как ротор. Это упрощает конструкцию, позволяет значительно повышать температуру рабочей среды, а, заодно и эффективность выработки электроэнергии. МГД-генераторы работают в качестве резервных либо аварийных источников, способных вырабатывать значительные потоки электроэнергии в малые промежутки времени.

Таким образом, закон электромагнитной индукции, обоснованный Майклом Фарадеем в свое время продолжает оставаться актуальным в наши дни.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ВВЕДЕНИЕ

Не случайно, что первый и самый важный шаг в открытии этой новой стороны электромагнитных взаимодействий был сделан основоположником представлений об электромагнитном поле - одним из величайших ученых мира - Майклом Фарадеем (1791-1867 г.). Фарадей был совершенно уверен в единстве электрических и магнитных явлений. Вскоре после открытия Эрстеда он записал в своем дневнике (1821 г.): "Превратить магнетизм в электричество". С этих пор Фарадей, не переставая, думал над данной проблемой. Говорят, он постоянно носил в жилетном кармане магнит, который должен был напоминать ему о поставленной задаче. Через десять лет, в 1831 г., в результате упорного труда и веры в успех задача была решена. Им было сделано открытие, лежащее в основе устройства всех генераторов электростанций мира, превращающих механическую энергию в энергию электрического тока. Другие источники: гальванические элементы, термо- и фотоэлементы дают ничтожную долю вырабатываемой энергии.

Электрический ток, рассуждал Фарадей, способен намагнитить железные предметы. Для этого достаточно положить железный брусок внутрь катушки. Не может ли магнит в свою очередь вызвать появление электрического тока или изменить его величину? Долгое время ничего обнаружить не удавалось.

ИСТОРИЯ ОТКРЫТИЯ ЯВЛЕНИЯ ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ

Высказывания синьоров Нобили и Антинори из журнала " Antologia "

«Господин Фарадей недавно открыл новый класс электродинамических явлений. Он представил об этом мемуар Лондонскому королевскому Обществу, но этот мемуар до сих пор еще не опубликован. Мы знаем о нем только заметку, сообщенную г. А шеттом Академии наук в Париже 26 декабря 1831 года , на основании письма, которое он получил от самого г. Фарадея.

Это сообщение побудило кавалера Антинори и меня самого тотчас же повторить основной опыт и изучить его с разнообразных точек зрения. Мы льстим себя надеждой, что результаты, к которым мы пришли, имеют известное значение, а потому мы спешим опубликовать их, не имея никаких предшествовавших материалов, кроме той заметки, которая послужила исходной точкой в наших исследованиях. »

"Мемуар г. Фарадея, - как говорит заметка, - делится на четыре части.

В первой, озаглавленной "Возбуждение гальванического электричества", мы находим следующий главный факт: гальванический ток, проходящий через металлический провод, производит другой ток в приближаемом проводе; второй ток по направлению противоположен первому и продолжается только одно мгновение. Если возбуждающий ток удалить, в проводе, находящемся под его влиянием, возникает ток, противоположный тому, который возникал в нем в первом случае, т.е. в том же направлении, как возбуждающий ток.

Вторая часть мемуара повествует об электрических токах, вызываемых магнитом. Приближая к магнитам катушки, г. Фарадей производил электрические токи; при удалении катушек возникали токи противоположного направления. Эти токи сильно действуют на гальванометр, проходят, хотя и слабо, через рассол и другие растворы. Отсюда следует, что этот ученый, пользуясь магнитом, возбуждал электрические токи, открытые г. Ампером.

Третья часть мемуара относится к основному электрическому состоянию, которое г. Фарадей называет электромоническое состояние.

В четвертой части говорится о столь же любопытном, как и необычном опыте, принадлежащем г. Араго; как известно, этот опыт состоит в том, что магнитная стрелка вращается под влиянием вращающегося металлического диска. Он установил, что при вращении металлического диска под влиянием магнита могут появляться электрические токи в количестве, достаточном для того, чтобы сделать из диска новую электрическую машину.

СОВРЕМЕННАЯ ТЕОРИЯ ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ

Электрические токи создают вокруг себя магнитное поле. А не может ли магнитное поле вызвать появление электрического поля? Фарадеем экспериментально было обнаружено, что при изменении магнитного потока, пронизывающего замкнутый контур, в нем возникает электрический ток. Это явление было названо электромагнитной индукцией. Ток, возникающий при явлении электромагнитной индукции называют индукционным. Строго говоря, при движении контура в магнитном поле генерируется не определенный ток, а определенная ЭДС. Более подробное изучение электромагнитной индукции показало, что ЭДС индукции, возникающая в каком-либо замкнутом контуре, равна скорости изменения магнитного потока через поверхность, ограниченную этим контуром, взятую с обратным знаком.

Электродвижущая сила в цепи - это результат действия сторонних сил, т.е. сил неэлектрического происхождения. При движении проводника в магнитном поле роль сторонних сил выполняет сила Лоренца, под действием которой происходит разделение зарядов, в результате чего на концах проводника появляется разность потенциалов. ЭДС индукции в проводнике характеризует работу по перемещению единичного положительного заряда вдоль проводника.

Явление электромагнитной индукции лежит в основе действия электрических генераторов. Если равномерно вращать проволочную рамку в однородном магнитном поле, то возникает индуцированный ток, периодически изменяющий свое направление. Даже одиночная рамка, вращающаяся в однородном магнитном поле, представляет собой генератор переменного тока.

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ЯВЛЕНИЯ ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ

Рассмотрим классические опыты Фарадея, с помощью которых было обнаружено явление электромагнитной индукции:

При перемещении постоянного магнита, его силовые линии пересекают витки катушки, при этом возникает индукционный ток, поэтому стрелка гальванометра отклоняется. Показания прибора зависят от скорости перемещения магнита и от числа витков катушки.

В этом опыте мы пропускаем через первую катушку ток, который создает магнитный поток и при движении второй катушки внутри первой, происходит пересечение магнитных линий, поэтому возникает индукционный ток.

При проведении опыта №2 было зафиксировано, в момент включения рубильника стрелка прибора отклонялась и показывала значение ЭДС затем стрелка возвращалась в первоначальное положение. При отключении рубильника стрелка опять отклонялась, но в другую сторону и показывала значение ЭДС, затем возвращалась в первоначальное положение. В момент включения рубильника величина тока увеличивается, но возникает какая то сила, которая мешает увеличению тока. Эта сила сама себя индуцирует, поэтому её назвали ЭДС самоиндукции. В момент отключения происходит то же самое, только направление ЭДС изменилось, поэтому стрелка прибора отклонилась в противоположную сторону.

Этот опыт показывает, что ЭДС электромагнитной индукции возникает при изменении величины и направлении тока. Это доказывает, что ЭДС индукции, которая сама себя создает - есть скорость изменения тока.

В течение одного месяца Фарадей опытным путем открыл все существенные особенности явления электромагнитной индукции. Оставалось только придать закону строгую количественную форму и полностью вскрыть физическую природу явления. Уже сам Фарадей уловил то общее, от чего зависит появление индукционного тока в опытах, которые внешне выглядят по-разному.

В замкнутом проводящем контуре возникает ток при изменении числа линий магнитной индукции, пронизывающих поверхность, ограниченную этим контуром. Это явление называется электромагнитной индукцией.

И чем быстрее меняется число линий магнитной индукции, тем больше возникающий ток. При этом причина изменения числа линий магнитной индукции совершенно безразлична.

Это может быть и изменение числа линий магнитной индукции, пронизывающих неподвижный проводник вследствие изменения силы тока в соседней катушке, и изменение числа линий вследствие движения контура в неоднородном магнитном поле, густота линий которого меняется в пространстве.

ПРАВИЛО ЛЕНЦА

Индукционный ток, возникший в проводнике, немедленно начинает взаимодействовать с породившим его током или магнитом. Если магнит (или катушку с током) приближать к замкнутому проводнику, то появляющийся индукционный ток своим магнитным полем обязательно отталкивает магнит (катушку). Для сближения магнита и катушки нужно совершить работу. При удалении магнита возникает притяжение. Это правило выполняется неукоснительно. Представьте себе, что дело обстояло бы иначе: вы подтолкнули магнит к катушке, и он сам собой устремился бы внутрь нее. При этом нарушился бы закон сохранения энергии. Ведь механическая энергия магнита увеличилась бы и одновременно возникал бы ток, что само по себе требует затраты энергии, ибо ток тоже может совершать работу. Индуцированный в якоре генератора электрический ток, взаимодействуя с магнитным полем статора, тормозит вращение якоря. Только поэтому для вращения якоря нужно совершать работу, тем большую, чем больше сила тока. За счет этой работы и возникает индукционный ток. Интересно отметить, что если бы магнитное поле нашей планеты было очень большим и сильно неоднородным, то быстрые движения проводящих тел на ее поверхности и в атмосфере были бы невозможны из-за интенсивного взаимодействия, индуцированного в теле тока с этим полем. Тела двигались бы как в плотной вязкой среде и при этом сильно разогревались бы. Ни самолеты, ни ракеты не могли бы летать. Человек не мог бы быстро двигать ни руками, ни ногами, так как человеческое тело -- неплохой проводник.

Если катушка, в которой наводится ток, неподвижна относительно соседней катушки с переменным током, как, например, у трансформатора, то и в этом случае направление индукционного тока диктуется законом сохранения энергии. Этот ток всегда направлен так, что созданное им магнитное поле стремится уменьшить изменения тока в первичной обмотке.

Отталкивание или притяжение магнита катушкой зависит от направления индукционного тока в ней. Поэтому закон сохранения энергии позволяет сформулировать правило, определяющее направление индукционного тока. В чем состоит различие двух опытов: приближение магнита к катушке и его удаление? В первом случае магнитный поток (или число линий магнитной индукции, пронизывающих витки катушки) увеличивается (рис а), а во втором случае -- уменьшается (рис. б). Причем в первом случае линии индукции В" магнитного поля, созданного возникшим в катушке индукционным током, выходят из верхнего конца катушки, так как катушка отталкивает магнит, а во втором случае, наоборот, входят в этот конец. Эти линии магнитной индукции на рисунке изображены штрихом.

Теперь мы подошли к главному: при увеличении магнитного потока через витки катушки индукционный ток имеет такое направление, что создаваемое им магнитное поле препятствует нарастанию магнитного потока через витки катушки. Ведь вектор индукции этого поля направлен против вектора индукции поля, изменение которого порождает электрический ток. Если же магнитный поток через катушку ослабевает, то индукционный ток создает магнитное поле с индукцией, увеличивающее магнитный поток через витки катушки.

В этом состоит сущность общего правила определения направления индукционного тока, которое применимо во всех случаях. Это правило было установлено русским физиком Э.X. Ленцем (1804-1865).

Согласно правилу Ленца, возникающий в замкнутом контуре индукционный ток имеет такое направление, что созданный им магнитный поток через поверхность, ограниченную контуром, стремится препятствовать тому изменению потока, которое порождает данный ток. Или, индукционный ток имеет такое направление, что препятствует причине его вызывающей.

В случае сверхпроводников компенсация изменения внешнего магнитного потока будет полной. Поток магнитной индукции через поверхность, ограниченную сверхпроводящим контуром, вообще не меняется со временем ни при каких условиях.

ЗАКОН ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ

электромагнитная индукция фарадей ленц

Опыты Фарадея показали, что сила индукционного тока I i в проводящем контуре пропорциональна скорости изменения числа линий магнитной индукции, пронизывающих поверхность, ограниченную этим контуром. Более точно это утверждение можно сформулировать, используя понятие магнитного потока.

Магнитный поток наглядно истолковывается как число линий магнитной индукции, пронизывающих поверхность площадью S . Поэтому скорость изменения этого числа есть не что иное, как скорость изменения магнитного потока. Если за малое время Дt магнитный поток меняется на ДФ , то скорость изменения магнитного потока равна.

Поэтому утверждение, которое вытекает непосредственно из опыта, можно сформулировать так:

сила индукционного тока пропорциональна скорости изменения магнитного потока через поверхность, ограниченную контуром:

Напомним, что в цепи возникает электрический ток в том случае, когда на свободные заряды действуют сторонние силы. Работу этих сил при перемещении единичного положительного заряда вдоль замкнутого контура называют электродвижущей силой. Следовательно, при изменении магнитного потока через поверхность, ограниченную контуром, в нем появляются сторонние силы, действие которых характеризуется ЭДС, называемой ЭДС индукции. Обозначим ее буквой E i .

Закон электромагнитной индукции формулируется именно для ЭДС, а не для силы тока. При такой формулировке закон выражает сущность явления, не зависящую от свойств проводников, в которых возникает индукционный ток.

Согласно закону электромагнитной индукции (ЭМИ) ЭДС индукции в замкнутом контуре равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром:

Как в законе электромагнитной индукции учесть направление индукционного тока (или знак ЭДС индукции) в соответствии с правилом Ленца?

На рисунке изображен замкнутый контур. Будем считать положительным направление обхода контура против часовой стрелки. Нормаль к контуру образует правый винт с направлением обхода. Знак ЭДС, т. е. удельной работы, зависит от направления сторонних сил по отношению к направлению обхода контура.

Если эти направления совпадают, то E i > 0 и соответственно I i > 0. В противном случае ЭДС и сила тока отрицательны.

Пусть магнитная индукция внешнего магнитного поля направлена вдоль нормали к контуру и возрастает со временем. Тогда Ф > 0 и > 0. Согласно правилу Ленца индукционный ток создает магнитный поток Ф " < 0. Линии индукции B " магнитного поля индукционного тока изображены на рисунке штрихом. Следовательно, индукционный ток I i направлен по часовой стрелке (против положительного направления обхода) и ЭДС индукции отрицательна. Поэтому в законе электромагнитной индукции должен стоять знак минус:

В Международной системе единиц закон электромагнитной индукции используют для установления единицы магнитного потока. Эту единицу называют вебером (Вб).

Так как ЭДС индукции E i выражают в вольтах, а время в секундах, то из закона ЭМИ вебер можно определить следующим образом:

магнитный поток через поверхность, ограниченную замкнутым контуром, равен 1 Вб, если при равномерном убывании этого потока до нуля за 1 с в контуре возникает ЭДС индукции равная 1 В: 1 Вб = 1 В 1 с.

ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ ЯВЛЕНИЯ ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ

Радиовещание

Переменное магнитное поле, возбуждаемое изменяющимся током, создаёт в окружающем пространстве электрическое поле, которое в свою очередь возбуждает магнитное поле, и т.д. Взаимно порождая друг друга, эти поля образуют единое переменное электромагнитное поле - электромагнитную волну. Возникнув в том месте, где есть провод с током, электромагнитное поле распространяется в пространстве со скоростью света -300000 км/с.

Магнитотерапия

В спектре частот разные места занимают радиоволны, свет, рентгеновское излучение и другие электромагнитные излучения. Их обычно характеризуют непрерывно связанными между собой электрическими и магнитными полями.

Синхрофазотроны

В настоящее время под магнитным полем понимают особую форму материи состоящую из заряженных частиц. В современной физике пучки заряженных частиц используют для проникновения в глубь атомов с целью их изучения. Сила, с которой действует магнитное поле на движущуюся заряженную частицу, называется силой Лоренца.

Расходомеры - счётчики

Метод основан на применении закона Фарадея для проводника в магнитном поле: в потоке электропроводящей жидкости, движущейся в магнитном поле наводится ЭДС, пропорциональная скорости потока, преобразуемая электронной частью в электрический аналоговый/цифровой сигнал.

Генератор постоянного тока

В режиме генератора якорь машины вращается под действием внешнего момента. Между полюсами статора имеется постоянный магнитный поток, пронизывающий якорь. Проводники обмотки якоря движутся в магнитном поле и, следовательно, в них индуктируется ЭДС, направление которой можно определить по правилу "правой руки". При этом на одной щетке возникает положительный потенциал относительно второй. Если к зажимам генератора подключить нагрузку, то в ней пойдет ток.

Явление ЭМИ широко применяется и в трансформаторах. Рассмотрим это устройство подробнее.

ТРАНСФОРМАТОРЫ

Трансформатор (от лат. transformo -- преобразовывать) -- статическое электромагнитное устройство, имеющее две или более индуктивно связанные обмотки и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем переменного тока в одну или несколько других систем переменного тока.

Изобретателем трансформатора является русский ученый П.Н. Яблочков (1847 - 1894 г.). В 1876 г. Яблочков использовал индукционную катушку с двумя обмотками в качестве трансформатора для питания изобретенных им электрических свечей. Трансформатор Яблочкова имел незамкнутый сердечник. Трансформаторы с замкнутым сердечником, подобные применяемым в настоящее время, появились значительно позднее, в 1884г. С изобретением трансформатора возник технический интерес к переменному току, который до этого времени не применялся.

Трансформаторы широко применяются при передаче электрической энергии на большие расстояния, распределении ее между приемниками, а также в различных выпрямительных, усилительных, сигнализационных и других устройствах.

Преобразование энергии в трансформаторе осуществляется переменным магнитным полем. Трансформатор представляет собой сердечник из тонких стальных изолированных одна от другой пластин, на котором помещаются две, а иногда и больше обмоток (катушек) из изолированного провода. Обмотка, к которой присоединяется источник электрической энергии переменного тока, называется первичной обмоткой, остальные обмотки - вторичными.

Если во вторичной обмотке трансформатора намотано в три раза больше витков, чем в первичной, то магнитное поле, созданное в сердечнике первичной обмоткой, пересекая витки вторичной обмотки, создаст в ней в три раза больше напряжение.

Применив трансформатор с обратным соотношением витков, можно так же легко и просто получить пониженное напряжение.

У равнение идеального трансформатора

Идеальный трансформатор -- трансформатор, у которого отсутствуют потери энергии на нагрев обмоток и потоки рассеяния обмоток. В идеальном трансформаторе все силовые линии проходят через все витки обеих обмоток, и поскольку изменяющееся магнитное поле порождает одну и ту же ЭДС в каждом витке, суммарная ЭДС, индуцируемая в обмотке, пропорциональна полному числу её витков. Такой трансформатор всю поступающую энергию из первичной цепи трансформирует в магнитное поле и, затем, в энергию вторичной цепи. В этом случае поступающая энергия, равна преобразованной энергии:

Где P1 -- мгновенное значение поступающей на трансформатор мощности, поступающей из первичной цепи,

P2 -- мгновенное значение преобразованной трансформатором мощности, поступающей во вторичную цепь.

Соединив это уравнение с отношение напряжений на концах обмоток, получим уравнение идеального трансформатора:

Таким образом получаем, что при увеличении напряжения на концах вторичной обмотки U2, уменьшается ток вторичной цепи I2.

Для преобразования сопротивления одной цепи к сопротивлению другой, нужно умножить величину на квадрат отношения. Например, сопротивление Z2 подключено к концам вторичной обмотки, его приведённое значение к первичной цепи будет

Данное правило справедливо также и для вторичной цепи:

Обозначение на схемах

На схемах трансформатор обозначается следующим образом:

Центральная толстая линия соответствует сердечнику, 1 -- первичная обмотка (обычно слева), 2,3 -- вторичные обмотки. Число полуокружностей в каком-то грубом приближении символизирует число витков обмотки (больше витков -- больше полуокружностей, но без строгой пропорциональности).

ПРИМЕНЕНИЕ ТРАНСФОРМАТОРОВ

Трансформаторы широко используются в промышленности и быту для различных целей:

1. Для передачи и распределения электрической энергии.

Обычно на электростанциях генераторы переменного тока вырабатывают электрическую энергию при напряжении 6-24 кВ, а передавать электроэнергию на дальние расстояния выгодно при значительно больших напряжениях (110, 220, 330, 400, 500, и 750 кВ). Поэтому на каждой электростанции устанавливают трансформаторы, осуществляющие повышение напряжения.

Распределение электрической энергии между промышленными предприятиями, населёнными пунктами, в городах и сельских местностях, а также внутри промышленных предприятий производится по воздушным и кабельным линиям, при напряжении 220, 110, 35, 20, 10 и 6 кВ. Следовательно, во всех распределительных узлах должны быть установлены трансформаторы, понижающие напряжение до величины 220, 380 и 660 В

2. Для обеспечения нужной схемы включения вентилей в преобразовательных устройствах и согласования напряжения на выходе и входе преобразователя. Трансформаторы, применяемые для этих целей, называются преобразовательными.

3. Для различных технологических целей: сварки (сварочные трансформаторы), питания электротермических установок (электропечные трансформаторы) и др.

4. Для питания различных цепей радиоаппаратуры, электронной аппаратуры, устройств связи и автоматики, электробытовых приборов, для разделения электрических цепей различных элементов указанных устройств, для согласования напряжения и пр.

5. Для включения электроизмерительных приборов и некоторых аппаратов (реле и др.) в электрические цепи высокого напряжения или же в цепи, по которым проходят большие токи, с целью расширения пределов измерения и обеспечения электробезопастности. Трансформаторы, применяемые для этих целей, называются измерительными.

ЗАКЛЮЧЕНИЕ

Явление электромагнитной индукции и его частные случаи широко применяются в электротехнике. Для преобразования механической энергии в энергию электрического тока используются синхронные генераторы . Для повышения или понижения напряжения переменного тока применяются трансформаторы. Использование трансформаторов позволяет экономично передавать электроэнергию от электрических станций к узлам потребления.

СПИСОК ЛИТЕРАТУРЫ :

1. Курс физики, Учебное пособие для вузов. Т.И. Трофимова, 2007.

2. Основы теории цепей, Г.И. Атабеков, Лань, СПб,-М.,-Краснодар, 2006.

3. Электрические машины, Л.М. Пиотровский, Л., «Энергия», 1972.

4. Силовые трансформаторы. Справочная книга / Под ред. С.Д. Лизунова, А.К. Лоханина. М.:Энергоиздат 2004.

5. Конструирование трансформаторов. А.В. Сапожников. М.: Госэнергоиздат. 1959.

6. Расчёт трансформаторов. Учебное пособие для вузов. П.М. Тихомиров. М.: Энергия, 1976.

7. Физика -учебное пособие для техникумов, автор В.Ф. Дмитриева, издание Москва "Высшая школа" 2004.

Размещено на Allbest.ru

Подобные документы

    Общие понятия, история открытия электромагнитной индукции. Коэффициент пропорциональности в законе электромагнитной индукции. Изменение магнитного потока на примере прибора Ленца. Индуктивность соленоида, расчет плотности энергии магнитного поля.

    лекция , добавлен 10.10.2011

    История открытия явления электромагнитной индукции. Исследование зависимости магнитного потока от магнитной индукции. Практическое применение явления электромагнитной индукции: радиовещание, магнитотерапия, синхрофазотроны, электрические генераторы.

    реферат , добавлен 15.11.2009

    Работа по перемещению проводника с током в магнитном поле. Изучение явления электромагнитной индукции. Способы получения индукционного тока в постоянном и переменном магнитном поле. Природа электродвижущей силы электромагнитной индукции. Закон Фарадея.

    презентация , добавлен 24.09.2013

    Электромагнитная индукция - явление порождения вихревого электрического поля переменным магнитным полем. История открытия Майклом Фарадеем данного явления. Индукционный генератор переменного тока. Формула для определения электродвижущей силы индукции.

    реферат , добавлен 13.12.2011

    Электромагнитная индукция. Закон Ленца, электродвижущая сила. Методы измерения магнитной индукции и магнитного напряжения. Вихревые токи (токи Фуко). Вращение рамки в магнитном поле. Самоиндукция, ток при замыкании и размыкании цепи. Взаимная индукция.

    курсовая работа , добавлен 25.11.2013

    Электрические машины как такие, в которых преобразование энергии происходит в результате явления электромагнитной индукции, история и основные этапы разработки, достижения в этой области. Создание электродвигателя с возможностью практического применения.

    реферат , добавлен 21.06.2012

    Характеристика вихрового электрического поля. Аналитическое объяснение опытных фактов. Законы электромагнитной индукции и Ома. Явления вращения плоскости поляризации света в магнитном поле. Способы получения индукционного тока. Применение правила Ленца.

    презентация , добавлен 19.05.2014

    Детство и юность Майкла Фарадея. Начало работы в Королевском институте. Первые самостоятельные исследования М. Фарадея. Закон электромагнитной индукции, электролиз. Болезнь Фарадея, последние экспериментальные работы. Значение открытий М. Фарадея.

    реферат , добавлен 07.06.2012

    Краткий очерк жизни, личностного и творческого становления великого английского физика Майкла Фарадея. Исследования Фарадея в области электромагнетизма и открытие им явления электромагнитной индукции, формулировка закона. Эксперименты с электричеством.

    реферат , добавлен 23.04.2009

    Период школьного обучения Майкла Фарадея, его первые самостоятельные исследования (опыты по выплавке сталей, содержащих никель). Создание английским физиком первой модели электродвигателя, открытие электромагнитной индукции и законов электролиза.

Тема : Использование электромагнитной индукции

Цели урока :

Образовательная:

  1. Продолжить работу над формированием понятия об электромагнитном поле как виде материи и доказательства его реального существования.
  2. Совершенствовать навыки решения качественных и расчетных задач.

Развивающая: Продолжить работу с учащимися над...

  1. формированием представлений о современной физической картине мира,
  2. умением раскрывать взаимосвязь между изученным материалом и явлениями жизни,
  3. расширением кругозора учащихся

Воспитательная: Научиться видеть проявления изученных закономерностей в окружающей жизни

Демонстрации

1. Трансформатор
2. Фрагменты CD-диска «Физика 7-11 классы. Библиотека наглядных пособий»

1)«Выработка электроэнергии»
2)«Запись и считывание информации на магнитной ленте»

3. Презентации

1) «Электромагнитная индукция – тесты» (I и II части)
2) «Трансформатор»

Ход урока

1. Актуализация:

Перед тем, как рассматривать новый материал, ответьте, пожалуйста, на следующие вопросы:

2. Решение задач по карточкам, см. презентацию (Приложение 1) (ответы: 1 Б, 2 Б, 3 В, 4 А, 5 В) – 5 мин

3. Новый материал .

Использование электромагнитной индукции

1) В прошлом учебном году при изучении по информатике темы «Носители информации» мы говорили о дисках, дискетах и т.д. Оказывается запись, и считывание информации с помощью магнитной ленты основано на применении явления электромагнитной индукции.
Запись и воспроизведение информации с помощью магнитной ленты (Фрагменты CD-диска «Физика 7-11 классы. Библиотека наглядных пособий», «Запись и считывание информации на магнитной ленте» – 3 мин) (Приложение 2)

2) Рассмотрим устройство и принципиальное действие такого прибора, как ТРАНСФОРМАТОР. (см. презентацию Приложение 3)
Действие трансформатора основано на явлении электромагнитной индукции.

ТРАНСФОРМАТОР – аппарат, преобразующий переменный ток одного напряжения в переменный ток другого напряжения при неизменной частоте.

3) В простейшем случае трансформатор состоит из замкнутого стального сердечника, на который надеты две катушки с проволочными обмотками. Та из обмоток, которая подключается к источнику переменного напряжения, называется первичной, а та, к которой присоединяют «нагрузку», т. е. приборы, потребляющие электроэнергию, называется вторичной.

а) повышающий трансформатор

б) понижающий трансформатор

При передаче энергии на большое расстояние – использование понижающих и повышающих трансформаторов.

4) Работа трансформатора (проведение опыта).

Загорание лампочки во вторичной катушке (объяснение данного опыта );
- принцип работы сварочного аппарата (Почему витки во вторичной катушке понижающего трансформатора толще? );
- принцип работы печи (Мощность в обеих катушках одинакова, а сила тока? )

5) Практическое применение электромагнитной индукции

Примеры технического использования электромагнитной индукции: трансформатор, генератор электрического тока – основной источник электричества.
Благодаря открытию электромагнитной индукции стала возможной выработка дешевой электрической энергии. Основой работы современных электростанций (в том числе и атомных) является индукционный генератор .
Генератор переменного тока (фрагмент диска Фрагменты CD-диска «Физика 7-11 классы. Библиотека наглядных пособий», «Выработка электроэнергии» - 2 мин) (Приложение 4)

Индукционный генератор состоит из двух частей: подвижного ротора и неподвижного статора. Чаще всего статор представляет собой магнит (постоянный или электрический), создающий исходное магнитное поле (его называют индуктором). Ротор состоит из одной или нескольких обмоток, в которых под действием изменяющегося магнитного поля создается индукционный ток. (Другое название такого ротора - якорь).

- обнаружение металлических предметов – специальные детекторы;
- поезд на магнитных подушках (см. стр. 129 учебника В. А. Касьянов «Физика – 11»)
токи Фуко (вихревые токи;)
замкнутые индукционные токи, возникающие в массивных проводящих телах .

Появляются либо вследствие изменения магнитного поля, в котором находится проводящее тело, либо в результате такого движения тела, когда изменяется магнитный поток, пронизывающий это тело (или какую-либо его часть).
Как и любые другие токи, вихревые токи оказывают на проводник тепловое действие: тела, в которых возникают такие токи, нагреваются.

Пример: устройство электропечей для плавки металлов и СВЧ – печей .

4. Выводы, оценки.

1) Электромагнитная индукция, приведите примеры практического применения электромагнитной индукции.
2) Электромагнитные волны – самый распространенный вид материи, а электромагнитная индукция – частный случай проявления электромагнитных волн.

5. Решение задач по карточкам, см. презентацию (Приложение 5) (ответы - 1В, 2А, 3А, 4Б).

6. Дом задание: П.35,36 (Учебник физики под ред. В.А.Касьянова 11 класс)

Явление электромагнитной индукции используется, прежде всего, для преобразования механической энергии в энергию электрического тока. Для этой цели применяются генераторы переменного тока (индукционные генераторы). Простейшим генератором переменного тока является проволочная рамка, вращающаяся равномерно с угловой скоростью w= constв однородном магнитном поле с индукцией В (рис. 4.5). Поток магнитной индукции, пронизывающий рамку площадью S , равен

При равномерном вращении рамки угол поворота , где – частота вращения. Тогда

По закону электромагнитной индукции ЭДС, наводимая в рамке при
ее вращении,

Если к зажимам рамки с помощью щеточно-контактного аппарата подключить нагрузку (потребителя электроэнергии), то через нее потечет переменный ток.

Для промышленного производства электроэнергии на электрических станциях используются синхронные генераторы (турбогенераторы, если станция тепловая или атомная, и гидрогенераторы, если станция гидравлическая). Неподвижная часть синхронного генератора называется статором , а вращающаяся – ротором (рис. 4.6). Ротор генератора имеет обмотку постоянного тока (обмотку возбуждения) и является мощным электромагнитом. Постоянный ток, подаваемый на
обмотку возбуждения через щеточно-контактный аппарат, намагничивает ротор, и при этом образуется электромагнит с северным и южным полюсами.

На статоре генератора расположены три обмотки переменного тока, которые смещены одна относительно другой на 120 0 и соединены между собой по определенной схеме включения.

При вращении возбужденного ротора с помощью паровой или гидравлической турбины его полюсы проходят под обмотками статора, и в них индуцируется изменяющаяся по гармоническому закону электродвижущая сила. Далее генератор по определенной схеме электрической сети соединяется с узлами потребления электроэнергии.

Если передавать электроэнергию от генераторов станций к потребителям по линиям электропередачи непосредственно (на генераторном напряжении, которое относительно невелико), то в сети будут происходить большие потери энергии и напряжения (обратите внимание на соотношения , ). Следовательно, для экономичной транспортировки электроэнергии необходимо уменьшить силу тока. Однако, так как передаваемая мощность при этом остается неизменной, напряжение должно
увеличиться во столько же раз, во сколько раз уменьшается сила тока.

У потребителя электроэнергии, в свою очередь, напряжение необходимо понизить до требуемого уровня. Электрические аппараты, в которых напряжение увеличивается или уменьшается в заданное количество раз, называются трансформаторами . Работа трансформатора также основана на законе электромагнитной индукции.



Рассмотрим принцип работы двухобмоточного трансформатора (рис. 4.7). При прохождении переменного тока по первичной обмотке вокруг нее возникает переменное магнитное поле с индукцией В , поток которого также переменный

Сердечник трансформатора служит для направления магнитного потока (магнитное сопротивление воздуха велико). Переменный магнитный поток, замыкающийся по сердечнику, индуцирует в каждой из обмоток переменную ЭДС:

У мощных трансформаторов сопротивления катушек очень малы,
поэтому напряжения на зажимах первичной и вторичной обмоток приблизительно равны ЭДС:

где k – коэффициент трансформации. При k <1 () трансформатор является повышающим , при k >1 () трансформатор является понижающим .

При подключении к вторичной обмотке трансформатора нагрузки, в ней потечет ток . При увеличении потребления электроэнергии по закону
сохранения энергии должна увеличиться энергия, отдаваемая генераторами станции, то есть

Это означает, что, повышая с помощью трансформатора напряжение
в k раз, удается во столько же раз уменьшить силу тока в цепи (при этом джоулевы потери уменьшаются в k 2 раз).

Тема 17. Основы теории Максвелла для электромагнитного поля. Электромагнитные волны

В 60-х гг. XIX в. английский ученый Дж. Максвелл (1831-1879) обобщил экспериментально установленные законы электрического и магнитного полей и создал законченную единую теорию электромагнитного поля . Она позволяет решить основную задачу электродинамики : найти характеристики электромагнитного поля заданной системы электрических зарядов и токов.

Максвелл выдвинул гипотезу, что всякое переменное магнитное поле возбуждает в окружающем пространстве вихревое электрическое поле , циркуляция которого и является причиной возникновения ЭДС электромагнитной индукции в контуре :

(5.1)

Уравнение (5.1) называют вторым уравнением Максвелла . Смысл этого уравнения заключается в том, что изменяющееся магнитное поле порождает вихревое электрическое, а последнее в свою очередь вызывает в окружающем диэлектрике или вакууме изменяющееся магнитное поле. Поскольку магнитное поле создается электрическим током, то, согласно Максвеллу, вихревое электрическое поле следует рассматривать как некоторый ток,
который протекает как в диэлектрике, так и в вакууме. Максвелл назвал этот ток током смещения .

Ток смещения, как это следует из теории Максвелла
и опытов Эйхенвальда, создает такое же магнитное поле, как и ток проводимости.

В своей теории Максвелл ввел понятие полного тока , равного сумме
токов проводимости и смещения. Следовательно, плотность полного тока

По Максвеллу полный ток в цепи всегда замкнут, то есть на концах проводников обрывается лишь ток проводимости, а в диэлектрике (вакууме) между концами проводника имеется ток смещения, который замыкает ток проводимости.

Введя понятие полного тока, Максвелл обобщил теорему о циркуляции вектора (или ):

(5.6)

Уравнение (5.6) называется первым уравнением Максвелла в интегральной форме . Оно представляет собой обобщенный закон полного тока и выражает основное положение электромагнитной теории: токи смещения создают такие же магнитные поля, как и токи проводимости .

Созданная Максвеллом единая макроскопическая теория электромагнитного поля позволила с единой точки зрения не только объяснить электрические и магнитные явления, но предсказать новые, существование которых было впоследствии подтверждено на практике (например, открытие электромагнитных волн).

Обобщая рассмотренные выше положения, приведем уравнения, составляющие основу электромагнитной теории Максвелла.

1. Теорема о циркуляции вектора напряженности магнитного поля:

Это уравнение показывает, что магнитные поля могут создаваться либо движущимися зарядами (электрическими токами), либо переменными электрическими полями.

2. Электрическое поле может быть как потенциальным (), так и вихревым (), поэтому напряженность суммарного поля . Так как циркуляция вектора равна нулю, то циркуляция вектора напряженности суммарного электрического поля

Это уравнение показывает, что источниками электрического поля могут быть не только электрические заряды, но и меняющиеся во времени магнитные поля.

3. ,

где – объемная плотность заряда внутри замкнутой поверхности; – удельная проводимость вещества.

Для стационарных полей (E= const, B= const) уравнения Максвелла принимают вид

то есть источниками магнитного поля в данном случае являются только
токи проводимости, а источниками электрического поля – только электрические заряды. В этом частном случае электрические и магнитные поля независимы друг от друга, что и позволяет изучать отдельно постоянные электрические и магнитные поля.

Используя известные из векторного анализа теоремы Стокса и Гаусса , можно представить полную систему уравнений Максвелла в дифференциальной форме (характеризующих поле в каждой точке пространства):

(5.7)

Очевидно, что уравнения Максвелла не симметричны относительно электрического и магнитного полей. Это связано с тем, что в природе
существуют электрические заряды, но нет зарядов магнитных.

Уравнения Максвелла – наиболее общие уравнения для электрических
и магнитных полей в покоящихся средах. Они играют в учении об электромагнетизме ту же роль, что и законы Ньютона в механике.

Электромагнитной волной называют переменное электромагнитное поле, распространяющееся в пространстве с конечной скоростью.

Существование электромагнитных волн вытекает из уравнений Максвелла, сформулированных в 1865 г. на основе обобщения эмпирических законов электрических и магнитных явлений. Электромагнитная волна образуется вследствие взаимной связи переменных электрического и магнитного полей – изменение одного поля приводит к изменению другого, то есть чем быстрее меняется во времени индукция магнитного поля, тем больше напряженность электрического поля, и наоборот. Таким образом, для образования интенсивных электромагнитных волн необходимо возбудить электромагнитные колебания достаточно высокой частоты. Фазовая скорость электромагнитных волн определяется
электрическими и магнитными свойствами среды:

В вакууме () скорость распространения электромагнитных волн совпадает со скоростью света; в веществе , поэтому скорость распространения электромагнитных волн в веществе всегда меньше, чем в вакууме.

Худолей Андрей, Хныков Игорь

Практическое применение явления электромагнитной индукции.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Электромагнитная индукция в современной технике Выполнили ученики 11 «А» класса МОУСОШ №2 города Суворова Хныков Игорь, Худолей Андрей

Явление электромагнитной индукции было открыто 29 августа 1831 г. Майклом Фарадеем. Явление электромагнитной индукции заключается в возникновении электрического тока в проводящем контуре, который либо покоится в переменном во времени магнитном поле, либо движется в постоянном магнитном поле таким образом, что число линий магнитной индукции, пронизывающих контур, меняется.

ЭДС электромагнитной индукции в замкнутом контуре численно равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Направление индукционного тока (так же, как и величина ЭДС), считается положительным, если оно совпадает с выбранным направлением обхода контура.

Опыт Фарадея постоянный магнит вставляют в катушку, замкнутую на гальванометр, или вынимают из нее. При движении магнита в контуре возникает электрический ток В течение одного месяца Фарадей опытным путём открыл все существенные особенности явления электромагнитной индукции. В настоящее время опыты Фарадея может провести каждый.

Основные источники электромагнитного поля В качестве основных источников электромагнитного поля можно выделить: Линии электропередач. Электропроводка (внутри зданий и сооружений). Бытовые электроприборы. Персональные компьютеры. Теле- и радиопередающие станции. Спутниковая и сотовая связь (приборы, ретрансляторы). Электротранспорт. Радарные установки.

Линии электропередач Провода работающей линии электропередач создают в прилегающем пространстве (на расстояниях порядка десятков метров от провода) электромагнитное поле промышленной частоты (50 Гц). Причем напряженность поля вблизи линии может изменяться в широких пределах, в зависимости от ее электрической нагрузки. Фактически границы санитарно-защитной зоны устанавливаются по наиболее удаленной от проводов граничной линии максимальной напряженности электрического поля, равной 1 кВ/м.

Электропроводка К электропроводке относятся: кабели электропитания систем жизнеобеспечения зданий, токораспределительные провода, а также разветвительные щиты, силовые ящики и трансформаторы. Электропроводка является основным источником электромагнитного поля промышленной частоты в жилых помещениях. При этом уровень напряженности электрического поля, излучаемого источником, зачастую относительно невысок (не превышает 500 В/м).

Бытовые электроприборы Источниками электромагнитных полей являются все бытовые приборы, работающие с использованием электрического тока. При этом уровень излучения изменяется в широчайших пределах в зависимости от модели, устройства прибора и конкретного режима работы. Также уровень излучения сильно зависит от потребляемой мощности прибора – чем выше мощность, тем выше уровень электромагнитного поля при работе прибора. Напряженность электрического поля вблизи электробытовых приборов не превышает десятков В/м.

Персональные компьютеры Основным источником неблагоприятного воздействия на здоровье пользователя компьютера является средство визуального отображения (СВО) монитора. Кроме монитора и системного блока персональный компьютер может также включать в себя большое количество других устройств (таких, как принтеры, сканеры, сетевые фильтры и т.п.). Все эти устройства работают с применением электрического тока, а значит, являются источниками электромагнитного поля.

Электромагнитное поле персональных компьютеров имеет сложнейший волновой и спектральный состав и трудно поддается измерению и количественной оценке. Оно имеет магнитную, электростатическую и лучевую составляющие (в частности, электростатический потенциал сидящего перед монитором человека может колебаться от –3 до +5 В). Учитывая то условие, что персональные компьютеры сейчас активно используются во всех отраслях человеческой деятельности, их влияние на здоровье людей подлежит тщательнейшему изучению и контролю

Теле- и радиопередающие станции На территории России в настоящее время размещается значительное количество радиотрансляционных станций и центров различной принадлежности. Передающие станции и центры размещаются в специально отведенных для них зонах и могут занимать довольно большие территории (до 1000 га). По своей структуре они включают в себя одно или несколько технических зданий, где находятся радиопередатчики, и антенные поля, на которых располагаются до нескольких десятков антенно-фидерных систем (АФС). Каждая система включает в себя излучающую антенну и фидерную линию, подводящую транслируемый сигнал.

Спутниковая связь Системы спутниковой связи состоят из передающей станции на Земле и спутников – ретрансляторов, находящихся на орбите. Передающие станции спутниковой связи излучают узконаправленный волновой пучок, плотность потока энергии в котором достигает сотен Вт/м. Системы спутниковой связи создают высокие напряженности электромагнитного поля на значительных расстояниях от антенн. Например, станция мощностью 225 кВт, работающая на частоте 2,38 ГГц, создает на расстоянии 100 км плотность потока энергии 2,8 Вт/м2. Рассеяние энергии относительно основного луча очень небольшое и происходит больше всего в районе непосредственного размещения антенны.

Сотовая связь Сотовая радиотелефония является сегодня одной из наиболее интенсивно развивающихся телекоммуникационных систем. Основными элементами системы сотовой связи являются базовые станции и мобильные радиотелефонные аппараты. Базовые станции поддерживают радиосвязь с мобильными аппаратами, вследствие чего они являются источниками электромагнитного поля. В работе системы применяется принцип деления территории покрытия на зоны, или так называемые «соты», радиусом км.

Интенсивность излучения базовой станции определяется нагрузкой, то есть наличием владельцев сотовых телефонов в зоне обслуживания конкретной базовой станции и их желанием воспользоваться телефоном для разговора, что, в свою очередь, коренным образом зависит от времени суток, места расположения станции, дня недели и других факторов. В ночные часы загрузка станций практически равна нулю. Интенсивность же излучения мобильных аппаратов зависит в значительной степени от состояния канала связи «мобильный радиотелефон – базовая станция» (чем больше расстояние от базовой станции, тем выше интенсивность излучения аппарата).

Электротранспорт Электротранспорт (троллейбусы, трамваи, поезда метрополитена и т.п.) является мощным источником электромагнитного поля в диапазоне частот Гц. При этом в роли главного излучателя в подавляющем большинстве случаев выступает тяговый электродвигатель (для троллейбусов и трамваев воздушные токоприёмники по напряженности излучаемого электрического поля соперничают с электродвигателем).

Радарные установки Радиолокационные и радарные установки имеют обычно антенны рефлекторного типа («тарелки») и излучают узконаправленный радиолуч. Периодическое перемещение антенны в пространстве приводит к пространственной прерывистости излучения. Наблюдается также временная прерывистость излучения, обусловленная цикличностью работы радиолокатора на излучение. Они работают на частотах от 500 МГц до 15 ГГц, однако отдельные специальные установки могут работать на частотах до 100 ГГц и более. Вследствие особого характера излучения они могут создавать на местности зоны с высокой плотностью потока энергии (100 Вт/м2 и более).

Металлодетекторы Технологически, принцип действия металлодетектора основан на явлении регистрации электромагнитного поля, которое создается вокруг любого металлического предмета при помещении его в электромагнитное поле. Это вторичное электромагнитное поле различается как по напряженности (силе поля), так и по прочим параметрам. Эти параметры зависят от размера предмета и его проводимости (у золота и серебра проводимость гораздо лучше, чем, например, у свинца) и естественно - от расстояния между антенной металлодетектора и самим предметом (глубины залегания).

Вышеприведенная технология обусловила состав металлодетектора: он состоит из четырех основных блоков: антенны (иногда излучающая и принимающая антенны различаются, а иногда - это одна и та же антенна), электронного обрабатывающего блока, блока вывода информации (визуальной - ЖК-дисплей или стрелочный индикатор и аудио - динамика или гнезда для наушников) и блока питания.

Металлодетекторы бывают: Поисковые Досмотровые Для строительных целей

Поисковые Данный металлодетектор предназначен для поиска всевозможных металлических предметов. Как правило - это самые большие по размеру, стоимости и естественно по выполняемым функциям модели. Это обусловлено тем, что иногда нужно находить предметы на глубине до нескольких метров в толще земли. Мощная антенна способна создавать большой уровень электромагнитного поля и с высокой чувствительностью обнаруживать даже малейшие токи на большой глубине. Например поисковый металлодетектор, обнаруживает металлическую монету на глубине в 2-3 метра в толще земли, которая может даже содержать железистые геологические соединения.

Досмотровые Используется спецслужбами, таможенниками и сотрудниками охраны самых различных организаций для поиска металлических предметов (оружия, драгоценных металлов, проводов взрывчатых устройств и т.д.) спрятанных на теле и в одежде человека. Эти металлодетекторы отличают компактность, удобство в обращении, наличие таких режимов, как беззвучная вибрация рукоятки (чтобы обыскиваемый человек не узнал, что сотрудник, производящий поиск что-то нашел). Дальность (глубина) обнаружения рублевой монеты в таких металлодетекторах доходит до 10-15 см.

Также широкое распространение получили арочные металлодетекторы, которые внешне напоминают арку и требуют прохождения человека через нее. Вдоль их вертикальных стен проложены сверхчувствительные антенны, которые обнаруживают металлические предметы на всех уровнях роста человека. Их обычно устанавливают перед местами культурно-массовых развлечений, в банках, учреждениях и т.д. Главная особенность арочных металлодетекторов - высокая чувствительность (настраиваемая) и большая скорость обработки потока людей.

Для строительных целей Данный класс металлодетекторов при помощи звуковой и световой сигнализации помогает строителям отыскать металлические трубы, элементы конструкций или привода, расположенные как в толще стен, так и за перегородками и фальш-панелями. Некоторые металлодетекторы для строительных целей часто объединяют в одном приборе с детекторами деревянных конструкция, детекторами напряжения на токоведущих проводах, детекторами протечек и т.д



Статьи по теме: